
Theory of Operating Systems
Week 1: Introduction to Operating Systems

Faye Chi Zhang Richard Cai Ping Ji

CUNY Hunter

January 28, 2026

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 1 / 48



Contact

Faye Chi Zhang: czhang2@gradcenter.cuny.edu

Richard Cai: jcai@gradcenter.cuny.edu

Ping Ji: Ping.Ji@hunter.cuny.edu

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 2 / 48



Today’s Outline

1 Course Overview and Policies

2 What is an Operating System?

3 OS History and Evolution

4 System Architecture and Kernel Designs

5 User Mode vs Kernel Mode

6 System Calls: The OS Interface

7 Hands-on: Tracing System Calls

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 3 / 48



Welcome: Why Study Operating Systems?

The Ultimate Software Challenge: Building systems that are:

Efficient: Direct control over CPU, RAM, and storage
Abstract: Clean APIs hiding hardware complexity
Robust: One crash shouldn’t bring down everything

Our Mission: From API Consumer to System Designer

The OS Philosophy

An Operating System is a government for hardware resources—managing conflict, enforcing
security, and providing essential services.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 4 / 48



What We Will Master

Three Fundamental Concepts:

Virtualization: Trick processes into thinking they own the CPU and all RAM

Processes, Scheduling, Memory Management

Concurrency: Manage chaos when threads fight for shared data

Threads, Locks, Semaphores, Deadlocks

Persistence: Store data reliably on failure-prone devices

File Systems, I/O, Storage

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 5 / 48



Course Policies: Grading

Undergraduate Students

Assignments (8) 40%
Weekly Quizzes (8–10) 20%
Midterm Exam 30%
Final Exam TBA
Participation 5%

Note: Final exam weight ??.

Masters Students

Assignments (8) 35%
Weekly Quizzes (8–10) 15%
Midterm Exam 20%
Research Project 20%
Participation 5%

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 6 / 48



Technical Requirements

Platform: All coding via the Course Online IDE

Zero Setup: No local environment needed

Supported Languages:
C / C++ (GCC 9.2.0)
Python (3.8.1)

Grading: Automated with hidden test cases

Late Policy

Submissions accepted up to 48 hours late with 20% penalty per 24-hour period.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 7 / 48



Course Schedule Overview

Week Topic

1 Introduction to Operating Systems
2 Process Management
3 Process Scheduling Algorithms
4 Inter-Process Communication
5 Threads and Concurrency
6-7 Synchronization and Deadlocks
8-9 Memory Management (Midterm Week 9)

10-12 Virtual Memory and File Systems
13-16 I/O, Storage, Security, Modern Topics

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 8 / 48



What is an Operating System?

Definition:

Software layer between applications and
hardware

Manages and allocates system resources

Provides abstractions for complex hardware

Key Perspective:

Programs are state machines

OS = State machine manager

Controls transitions between states

Applications

System Libraries

Operating System

Hardware

Abstraction

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 9 / 48



Operating System Architecture

Layered System Design:

User applications at top

OS kernel mediates access

Hardware at the bottom

Each layer provides services to layer above

Source: Wikimedia Commons (CC BY-SA)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 10 / 48



Core Functions of an Operating System

Resource Management:

CPU: Process scheduling

Memory: Allocation, virtual memory

Storage: File systems

I/O Devices: Device drivers

Network: Protocol stacks

Key Services:

Multiplexing: Share hardware among
apps

Isolation: Protect apps from each other

Abstraction: Hide hardware complexity

Security: Access control

Communication: IPC mechanisms

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 11 / 48



The OS as a Resource Manager

Problem: Multiple programs want to use limited resources simultaneously

CPU: Only one instruction executes at a time (per core)

Solution: Time-sharing, scheduling algorithms

Memory: Limited physical RAM

Solution: Virtual memory, paging

Disk: Single read/write head

Solution: I/O scheduling, buffering

Network: Shared bandwidth

Solution: Packet scheduling, QoS

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 12 / 48



The OS as an Abstraction Provider

Hardware is messy. OS provides clean interfaces.

Hardware Reality OS Abstraction

CPU registers, instructions Process (virtual CPU)
Physical RAM addresses Virtual address space
Disk sectors, blocks Files and directories
Network packets, buffers Sockets and streams
Interrupts, I/O ports Device-independent I/O

Key Insight

Programmers write to abstractions, not hardware. This enables portability and simplicity.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 13 / 48



What’s Inside an Operating System?

Core Components:

Process Manager: Create, schedule,
terminate

Memory Manager: Allocate, map,
protect

File System: Organize, store, retrieve

I/O Manager: Device drivers, buffering

Network Stack: Protocols, sockets

Supporting Components:

Scheduler: CPU allocation policy

Interrupt Handler: Hardware events

System Call Interface: User/kernel
boundary

Security Module: Access control

Clock/Timer: Time management

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 14 / 48



The Computer Model: Von Neumann Architecture

Key Components:

CPU: Executes instructions

Memory: Stores programs and data

Input/Output: External communication

Bus: Connects components

Key Insight:

Programs stored in memory

Same memory for code and data

Sequential instruction execution

Source: Wikimedia Commons

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 15 / 48



OS History: Evolution of Computing

Era Characteristics

1940s-50s No OS. Manual operation, one job at a time
1960s Batch processing, multiprogramming
1970s Time-sharing, UNIX (1969), C language
1980s Personal computers, DOS, early Mac OS
1990s GUI explosion, Windows NT, Linux (1991)
2000s Mobile OS (iOS, Android), virtualization
2010s+ Cloud computing, containers, microservices

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 16 / 48



Early Computing: No Operating System

1940s-1950s: The Dark Ages

Direct Hardware Access: Programmers controlled everything

Single User: One program at a time

Manual Operation:
Load program via punch cards
Press buttons to start
Wait for output (often hours)
Debug by examining lights

Problem: Expensive computers sat idle between jobs

Cost

A computer cost millions. Human time was cheap. Machine time was precious.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 17 / 48



IBM Model 701 (Early 1950s): Before Modern OS

Context: Expensive machine time, manual operation, and long turnaround.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 18 / 48



Batch Processing Systems

1960s: First Operating Systems

Key Innovation:

Operator batches similar jobs

OS automatically loads next job

Reduced setup time

Better CPU utilization

Limitations:

No interaction during execution

Long turnaround (hours/days)

CPU idle during I/O

One job at a time in memory

Solution needed: Keep CPU busy during I/O waits

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 19 / 48



Batch Era Mainframes (Early 1960s)

IBM 7094 (Early 1960s) IBM System/360 Console

Why OS mattered: reduce idle time, automate job sequencing, and manage I/O.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 20 / 48



Multiprogramming

Key Insight: While one job waits for I/O, run another!

How It Works:

Multiple jobs in memory

When Job A blocks on I/O

Switch to Job B

CPU never idle (if jobs available)

New Challenges:

Memory protection needed

Job scheduling decisions

Resource allocation

Deadlock prevention

Impact

CPU utilization jumped from 30% to 80%+. This was revolutionary.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 21 / 48



Operator Console: Early Human–Machine Interface

What the operator did:

Load jobs / tapes

Start/stop execution

Monitor status lights

Handle failures / I/O issues

Console shows how “interactive” early
computing really was (for operators).

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 22 / 48



Time-Sharing Systems

1970s: Interactive Computing

Problem: Batch systems had no interactivity

Solution: Give each user a time slice of CPU

Illusion: Each user thinks they have the whole computer

UNIX (1969):

Developed at Bell Labs by Thompson and Ritchie

Written in C (portable!)

Hierarchical file system

Pipes for inter-process communication

Foundation for modern OS design

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 23 / 48



Personal Computing Era

1980s-1990s: Computers for Everyone

MS-DOS (1981):

Single-user, single-task

Command-line interface

No memory protection

Direct hardware access

Windows/Mac:

Graphical user interface

Mouse-driven interaction

Eventually: protected memory

Multitasking support

Linux (1991): Free, open-source UNIX-like OS by Linus Torvalds

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 24 / 48



UNIX Family Tree

UNIX Heritage:

Original UNIX (1969)

BSD (1977)

System V (1983)

Linux (1991)

macOS (Darwin/BSD)

Android (Linux kernel)

Source: Wikimedia Commons

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 25 / 48



Modern Operating Systems

2000s-Present

Mobile: iOS (2007), Android (2008)

Touch interfaces, power management, app sandboxing

Virtualization: VMware, Xen, KVM

Multiple OS on one machine

Containers: Docker (2013), Kubernetes
Lightweight isolation, microservices

Cloud: AWS, Azure, GCP

OS as a service, serverless computing

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 26 / 48



10-Minute Break

We’ll continue with System Architecture

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 27 / 48



Kernel Architecture: Design Choices

Question: What should run in the privileged kernel?

More in kernel: Faster, but harder to debug, less secure

Less in kernel: Slower, but more modular, more reliable

Four Main Approaches:

1 Monolithic Kernel

2 Microkernel

3 Hybrid Kernel

4 Exokernel / Unikernel

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 28 / 48



Monolithic Kernel

Design:

Entire OS runs in kernel space

All services in one address space

Direct function calls between components

Advantages:

High performance

No IPC overhead

Simple design

Disadvantages:

Large attack surface

Bug in one module crashes all

Hard to maintain (millions of lines)

Examples:

Linux

BSD (FreeBSD, OpenBSD)

Traditional UNIX

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 29 / 48



Microkernel

Design:

Minimal kernel: IPC, scheduling, memory

Services run in user space

Communication via message passing

Advantages:

Small trusted computing base

Fault isolation

Easier to verify/prove correct

Disadvantages:

IPC overhead

More context switches

Complex design

Examples:

Minix

seL4 (formally verified!)

QNX (real-time)

GNU Hurd

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 30 / 48



Hybrid Kernel and Alternatives

Hybrid Kernel:

Combines monolithic and micro

Some services in kernel for speed

Some modularity preserved

Examples: Windows NT, macOS

Unikernel:

Single-purpose, library OS

Application + OS compiled together

Minimal footprint

Examples: MirageOS, IncludeOS

Exokernel:

Minimal abstraction

Apps manage own resources

Maximum flexibility

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 31 / 48



Case Study: Linux Kernel Structure

User Applications

System Call Interface

Process
Mgmt

Memory
Mgmt

File
Systems

Network
Stack

Device Drivers

Hardware

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 32 / 48



Linux Kernel: Interactive Map

Source: Wikimedia Commons - Linux Kernel Map (CC BY-SA)
Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 33 / 48



The Protection Boundary

Why do we need protection?

Prevent buggy apps from crashing the system

Prevent malicious apps from stealing data

Ensure fair resource sharing

Hardware Support: Protection Rings (x86)

Ring 0

Ring 1-2

Ring 3

Kernel (most privileged)

(rarely used)

User applications

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 34 / 48



x86 Protection Rings Architecture

Intel x86 Privilege Levels:

Ring 0: Kernel/OS (full access)

Ring 1-2: Device drivers (rarely used in
modern OS)

Ring 3: User applications (restricted)

Modern Usage:

Most OS use only Ring 0 and Ring 3

Hypervisors may use Ring -1 (VMX root)

Source: Wikimedia Commons (CC BY-SA)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 35 / 48



User Mode (Ring 3)

Restricted Environment for Applications

Cannot:

Access hardware directly

Execute privileged instructions

Access kernel memory

Modify page tables

Disable interrupts

Can:

Execute normal instructions

Access own memory

Make system calls

Use CPU registers

Perform computations

Violation

Attempting privileged operations triggers a protection fault — the OS terminates the process.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 36 / 48



Kernel Mode (Ring 0)

Full Privileges for the Operating System

Full Access To:

All memory (physical and virtual)

All CPU instructions

All I/O ports

All hardware devices

Interrupt handling

Responsibilities:

Process management

Memory management

Device drivers

File system operations

Network stack

Security enforcement

Trust

Kernel code is trusted. A bug here affects the entire system.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 37 / 48



Switching Between Modes

How does a user program request kernel services?

1 System Call: User program invokes syscall instruction

2 Trap: Hardware switches to kernel mode

3 Handler: Kernel executes the requested service

4 Return: Kernel returns result, switches back to user mode

Other ways to enter kernel mode:

Interrupt: Hardware device needs attention

Exception: Error (divide by zero, page fault)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 38 / 48



The Cost of Mode Switching

Mode switch is expensive!

Save user state: Registers, program counter

Switch page tables: Different address space

Flush TLB: Translation cache invalidated

Cache pollution: Kernel code displaces user code

Typical cost: 1-10 microseconds

Design Implication

Minimize system calls in performance-critical code. Batch operations when possible.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 39 / 48



System Calls: The OS Interface

Definition: The programmatic interface to OS services

Only way for user programs to access kernel services

Controlled entry points into the kernel

Each syscall has a unique number

Parameters passed via registers

Analogy

System calls are like a restaurant menu. You can only order what’s on the menu — you can’t
go into the kitchen yourself.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 40 / 48



Categories of System Calls

Category Examples

Process Control fork, exec, exit, wait, kill
File Management open, read, write, close, stat
Device Management ioctl, read, write
Information getpid, time, uname
Communication pipe, socket, send, recv
Memory mmap, brk, mprotect

Linux has ˜400 system calls. Windows has ˜2000+.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 41 / 48



How System Calls Work

Application

C Library (libc)

User/Kernel Boundary

Syscall Handler

Kernel Service

1. call write()

2. syscall instruction

3. execute service

4. return

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 42 / 48



Example: The write() System Call

#include <unistd.h>

int main() {

char *msg = "Hello , OS!\n";

// System call: write to stdout

write(1, msg , 11);

return 0;

}

write() parameters:

fd = 1: File descriptor (stdout)

buf = msg: Data to write

count = 11: Number of bytes

Returns: Number of bytes written, or -1 on
error

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 43 / 48



Essential System Calls

Process:

fork(): Create child process

exec(): Replace process image

exit(): Terminate process

wait(): Wait for child

getpid(): Get process ID

File I/O:

open(): Open file

read(): Read from file

write(): Write to file

close(): Close file

lseek(): Move file pointer

Key Insight

These simple calls combine to build complex programs. UNIX philosophy: simple tools,
powerful combinations.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 44 / 48



Hands-on: Tracing System Calls

Use strace to see what syscalls a program makes:

$ strace ./hello

execve("./ hello", ["./ hello"], ...) = 0

brk(NULL) = 0x55a8c8d000

mmap(NULL , 8192, ...) = 0x7f2a8c000000

...

write(1, "Hello , OS!\n", 11) = 11

exit_group (0) = ?

What we learn:

Every I/O operation is a system call

Even simple programs make many syscalls

The kernel does a lot of work behind the scenes

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 45 / 48



More strace Examples

Count syscalls by type:

$ strace -c ls

% time calls syscall

------ ------- ----------------

25.00 10 read

20.00 8 write

15.00 12 openat

10.00 12 close

...

Useful strace options:

-e trace=file: Only file-related syscalls

-p PID: Attach to running process

-t: Show timestamps

-f: Follow child processes

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 46 / 48



Key Takeaways

1 OS Definition: Resource manager + abstraction provider

2 History: From batch processing to cloud computing

3 Kernel Designs: Monolithic vs microkernel trade-offs

4 Protection: User mode vs kernel mode boundary

5 System Calls: The only way to access OS services

Core Principle

The OS creates the illusion that each program has the machine to itself, while safely sharing
resources among all programs.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 47 / 48



This Week’s Tasks

Quiz 1: Introduction concepts (due before next class)

Reading: Textbook Chapters 1-2

Hands-on: Try strace on various programs

Next Week: Process Management

Process lifecycle
Process Control Block
fork() and exec()
Context switching

Questions?

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026 48 / 48


	Course Overview
	What is an Operating System?
	OS History and Evolution
	System Architecture
	User Mode vs Kernel Mode
	System Calls
	Summary

