Theory of Operating Systems

Week 1: Introduction to Operating Systems

Faye Chi Zhang Richard Cai Ping Ji
CUNY Hunter

January 28, 2026

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

o Faye Chi Zhang: czhang2@gradcenter.cuny.edu
@ Richard Cai: jcai@gradcenter.cuny.edu

@ Ping Ji: Ping.Ji@hunter.cuny.edu

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Today's Outline

@ Course Overview and Policies

@ What is an Operating System?

© OS History and Evolution

@ System Architecture and Kernel Designs
© User Mode vs Kernel Mode

@ System Calls: The OS Interface

@ Hands-on: Tracing System Calls

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Welcome: Why Study Operating Systems?

@ The Ultimate Software Challenge: Building systems that are:

o Efficient: Direct control over CPU, RAM, and storage
o Abstract: Clean APIs hiding hardware complexity
e Robust: One crash shouldn’t bring down everything

@ Our Mission: From API Consumer to System Designer

The OS Philosophy

An Operating System is a government for hardware resources—managing conflict, enforcing
security, and providing essential services.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

What We Will Master

Three Fundamental Concepts:
o Virtualization: Trick processes into thinking they own the CPU and all RAM
o Processes, Scheduling, Memory Management
@ Concurrency: Manage chaos when threads fight for shared data
e Threads, Locks, Semaphores, Deadlocks
o Persistence: Store data reliably on failure-prone devices
o File Systems, 1/0, Storage

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Course Policies: Grading

Undergraduate Students Masters Students

Assignments (8) 40% Assignments (8) 35%
Weekly Quizzes (8-10) 20% Weekly Quizzes (8-10) 15%
Midterm Exam 30% Midterm Exam 20%
Final Exam TBA Research Project 20%
Participation 5% Participation 5%

Note: Final exam weight 77.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Technical Requirements

e Platform: All coding via the Course Online IDE

@ Zero Setup: No local environment needed
o Supported Languages:

o C/ C++ (GCC9.2.0)
o Python (3.8.1)

o Grading: Automated with hidden test cases

Late Policy
Submissions accepted up to 48 hours late with 20% penalty per 24-hour period.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Course Schedule Overview

Topic

10-12
13-16

Introduction to Operating Systems
Process Management

Process Scheduling Algorithms
Inter-Process Communication

Threads and Concurrency
Synchronization and Deadlocks

Memory Management (Midterm Week 9)
Virtual Memory and File Systems

I/O, Storage, Security, Modern Topics

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter)

Theory of OS January 28, 2026

What is an Operating System?

Definition:

@ Software layer between applications and
hardware (Applications }

@ Manages and allocates system resources

.) [System Libraries]
@ Provides abstractions for complex hardware

Abstraction

Key Perspective: ‘ Operating System ’

@ Programs are state machines ‘ Hardware ’

@ OS = State machine manager

@ Controls transitions between states

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Operating System Architecture

Layered System Design:

@ User applications at top

OS kernel mediates access

°
@ Hardware at the bottom
°

Each layer provides services to layer above

Source: Wikimedia Commons (CC BY-SA)
Operating system

Hardware

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Core Functions of an Operating System

Key Services:
Resource Management: y

e Multiplexing: Share hardware among
apps
o Isolation: Protect apps from each other

@ CPU: Process scheduling
@ Memory: Allocation, virtual memory

t . Fil t . . .
® Storage: File systems o Abstraction: Hide hardware complexity

@ 1/0 Devices: Device drivers .
/ @ Security: Access control

@ Network: Protocol stacks . .)
@ Communication: |PC mechanisms

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

The OS as a Resource Manager

Problem: Multiple programs want to use limited resources simultaneously

e CPU: Only one instruction executes at a time (per core)
e Solution: Time-sharing, scheduling algorithms
@ Memory: Limited physical RAM
e Solution: Virtual memory, paging
e Disk: Single read/write head
o Solution: 1/0 scheduling, buffering
@ Network: Shared bandwidth
e Solution: Packet scheduling, QoS

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

The OS as an Abstraction Provider

Hardware is messy. OS provides clean interfaces.

Hardware Reality OS Abstraction

CPU registers, instructions Process (virtual CPU)
Physical RAM addresses Virtual address space

Disk sectors, blocks Files and directories
Network packets, buffers Sockets and streams
Interrupts, 1/O ports Device-independent 1/0

Programmers write to abstractions, not hardware. This enables portability and simplicity.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

What's Inside an Operating System?

Core Components: Supporting Components:

@ Process Manager: Create, schedule,

. @ Scheduler: CPU allocation policy
terminate

o Interrupt Handler: Hardware events

Memory Manager: Allocate, map,

protect e System Call Interface: User/kernel

boundary

File System: Organize, store, retrieve

Security Module: Access control

1/0 Manager: Device drivers, buffering

@ Clock/Timer: Time management
Network Stack: Protocols, sockets / &

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

The Computer Model: Von Neumann Architecture

Key Components:
@ CPU: Executes instructions

@ Memory: Stores programs and data

Central Processing Unit

@ Input/Output: External communication

@ Bus: Connects components

Input Arithmetic/Logic Unit Output
Device Device

Key Insight:

@ Programs stored in memory

@ Same memory for code and data

@ Sequential instruction execution

Source: Wikimedia Commons

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

OS History: Evolution of Computing

Era

Characteristics

1940s-50s
1960s
1970s
1980s
1990s
2000s
2010s+

No OS. Manual operation, one job at a time
Batch processing, multiprogramming
Time-sharing, UNIX (1969), C language
Personal computers, DOS, early Mac OS
GUI explosion, Windows NT, Linux (1991)

Mobile OS (iOS, Android), virtualization
Cloud computing, containers, microservices

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Early Computing: No Operating System

1940s-1950s: The Dark Ages

Direct Hardware Access: Programmers controlled everything

Single User: One program at a time
Manual Operation:

Load program via punch cards
Press buttons to start

Wait for output (often hours)
Debug by examining lights

@ Problem: Expensive computers sat idle between jobs

A computer cost millions. Human time was cheap. Machine time was precious. \

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

IBM Model 701 (Early 1950s): Before Modern OS
IBM Model 701 (Early 1950's)

Context: Expensive machine time, manual operation, and long turnaround.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Batch Processing Systems

1960s: First Operating Systems

Key Innovation: Limitations:
@ Operator batches similar jobs @ No interaction during execution
e OS automatically loads next job e Long turnaround (hours/days)
@ Reduced setup time e CPU idle during I/O
@ Better CPU utilization @ One job at a time in memory

Solution needed: Keep CPU busy during I/O waits

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Batch Era Mainframes (Early 1960s)

IBM 7094 (Early 1960's) IBM System 360 Console

srarn BB

IBM 7094 (Early 1960s) IBM System/360 Console
Why OS mattered: reduce idle time, automate job sequencing, and manage 1/0.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Multiprogramming

Key Insight: While one job waits for /0, run another!

How It Works: New Challenges:
@ Multiple jobs in memory @ Memory protection needed
@ When Job A blocks on I/O @ Job scheduling decisions
@ Switch to Job B @ Resource allocation
@ CPU never idle (if jobs available) @ Deadlock prevention

CPU utilization jumped from 30% to 80%--. This was revolutionary. \

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Operator Console: Early Human—Machine Interface

What the operator did: IBM 701 Console
@ Load jobs / tapes
e Start/stop execution
@ Monitor status lights
@ Handle failures / 1/0O issues

Console shows how “interactive” early
computing really was (for operators).

701 OPERATORS PANEL

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Time-Sharing Systems

1970s: Interactive Computing

o Problem: Batch systems had no interactivity
@ Solution: Give each user a time slice of CPU

@ lllusion: Each user thinks they have the whole computer

UNIX (1969):
Developed at Bell Labs by Thompson and Ritchie
Written in C (portable!)

Hierarchical file system

Pipes for inter-process communication

Foundation for modern OS design

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Personal Computing Era

1980s-1990s: Computers for Everyone

MS-DOS (1981): Windows/Mac:
@ Single-user, single-task @ Graphical user interface
@ Command-line interface @ Mouse-driven interaction
@ No memory protection o Eventually: protected memory
@ Direct hardware access e Multitasking support

Linux (1991): Free, open-source UNIX-like OS by Linus Torvalds

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

UNIX Family Tree

UNIX Heritage:

Original UNIX (1969)
BSD (1977)

System V (1983)
Linux (1991)

macOS (Darwin/BSD)
Android (Linux kernel)

Source: Wikimedia Commons

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Modern Operating Systems

2000s-Present

e Mobile: iOS (2007), Android (2008)
e Touch interfaces, power management, app sandboxing
@ Virtualization: VMware, Xen, KVM
e Multiple OS on one machine
e Containers: Docker (2013), Kubernetes
o Lightweight isolation, microservices
@ Cloud: AWS, Azure, GCP

e OS as a service, serverless computing

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

10-Minute Break

We'll continue with System Architecture

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Kernel Architecture: Design Choices

Question: What should run in the privileged kernel?

@ More in kernel: Faster, but harder to debug, less secure

@ Less in kernel: Slower, but more modular, more reliable

Four Main Approaches:
@ Monolithic Kernel
@ Microkernel
© Hybrid Kernel
© Exokernel / Unikernel

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Monolithic Kernel

Design:

@ Entire OS runs in kernel space

@ All services in one address space

Disadvantages:
@ Large attack surface

@ Bug in one module crashes all

@ Direct function calls between components @ Hard to maintain (millions of lines)

Advantages:
@ High performance
@ No IPC overhead

@ Simple design

Examples:
@ Linux
e BSD (FreeBSD, OpenBSD)
@ Traditional UNIX

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter)

Theory of OS January 28, 2026

Microkernel

Disadvantages:
o IPC overhead

@ More context switches

Design:
@ Minimal kernel: IPC, scheduling, memory

@ Services run in user space

. . . o Complex design
o Communication via message passing

Advantages: Examples:
. e Minix
@ Small trusted computing base)
seL4 (formally verified!)

°
e QNX (real-time)
e GNU Hurd

@ Fault isolation

e Easier to verify/prove correct

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Hybrid Kernel and Alternatives

Hybrid Kernel:
@ Combines monolithic and micro
@ Some services in kernel for speed
@ Some modularity preserved
@ Examples: Windows NT, macOS

Unikernel:
@ Single-purpose, library OS
@ Application + OS compiled together
@ Minimal footprint
@ Examples: MirageOS, IncludeOS

Exokernel:
@ Minimal abstraction
@ Apps manage own resources

@ Maximum flexibility

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter)

Theory of OS January 28, 2026

Case Study: Linux Kernel Structure

[User Applications]
[System Call Interface J
Process Memory File Network
Mgmt Mgmt Systems Stack
[Device Drivers]
(Hardware)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Linux Kernel: Interactive Map

Linux kernel map
system processing memory storage networking human
et vamey. o w ™ interface
memory access files & directories sockets access HI char devices
access.

functions
layers e

e

memory disk controllers network controllers user peripherals

Source: Wikimedia Commons - Linux Kernel Map (CC BY-SA)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

The Protection Boundary

Why do we need protection?
@ Prevent buggy apps from crashing the system
@ Prevent malicious apps from stealing data

@ Ensure fair resource sharing
Hardware Support: Protection Rings (x86)

User applications

(rarely used)

Kernel (most privileged)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

x86 Protection Rings Architecture

Intel x86 Privilege Levels:
e Ring 0: Kernel/OS (full access)

e Ring 1-2: Device drivers (rarely used in
modern OS)

e Ring 3: User applications (restricted)

Least privileged

Most privileged

Modern Usage:

@ Most OS use only Ring 0 and Ring 3

Device drivers

Applications

@ Hypervisors may use Ring -1 (VMX root)
Source: Wikimedia Commons (CC BY-SA)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

User Mode (Ring 3)

Restricted Environment for Applications

Cannot: Can:
@ Access hardware directly @ Execute normal instructions
@ Execute privileged instructions @ Access own memory
@ Access kernel memory o Make system calls
@ Modify page tables @ Use CPU registers
° °

Disable interrupts Perform computations

Attempting privileged operations triggers a protection fault — the OS terminates the process. \

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Kernel Mode (Ring 0)

Full Privileges for the Operating System

Responsibilities:
Full Access To:
_ _ @ Process management
@ All memory (physical and virtual)
All CPU instructions
All 1/0 ports

All hardware devices

Memory management

Device drivers

Network stack

]
("]
o File system operations
"]
"]

Interrupt handlin
P g Security enforcement

Kernel code is trusted. A bug here affects the entire system. \

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Switching Between Modes

How does a user program request kernel services?

© System Call: User program invokes syscall instruction
@ Trap: Hardware switches to kernel mode
© Handler: Kernel executes the requested service

@ Return: Kernel returns result, switches back to user mode

Other ways to enter kernel mode:
@ Interrupt: Hardware device needs attention

e Exception: Error (divide by zero, page fault)

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

The Cost of Mode Switching

Mode switch is expensive!

Save user state: Registers, program counter
Switch page tables: Different address space
Flush TLB: Translation cache invalidated

Cache pollution: Kernel code displaces user code

Typical cost: 1-10 microseconds

Design Implication

Minimize system calls in performance-critical code. Batch operations when possible.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

System Calls: The OS Interface

Definition: The programmatic interface to OS services

@ Only way for user programs to access kernel services
@ Controlled entry points into the kernel
@ Each syscall has a unique number

@ Parameters passed via registers

System calls are like a restaurant menu. You can only order what's on the menu — you can’t
go into the kitchen yourself.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Categories of System Calls

Category Examples

Process Control fork, exec, exit, wait, kill
File Management open, read, write, close, stat
Device Management ioctl, read, write
Information getpid, time, uname
Communication pipe, socket, send, recv
Memory mmap, brk, mprotect

Linux has “400 system calls. Windows has “2000+.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

How System Calls Work

[Application }—
[1. call write()
(C Library (libc)

——————————————— - 2 - syseall instrudtiontser /Kernel Boundary

(Syscall Handler }

| 3. execute seryice

‘ Kernel Service }7

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Example: The write() System Call

#include <unistd.h>

int main() {

char *msg = "Hello, 0S!\n";

// System call: write to stdout
write(l, msg, 11);

return O;

write() parameters:
e fd = 1: File descriptor (stdout)
@ buf

msg: Data to write

@ count = 11: Number of bytes

Returns: Number of bytes written, or -1 on
error

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter)

Theory of OS

January 28, 2026

Essential System Calls

Process: File 1/0:
o fork(): Create child process @ open(): Open file
o exec(): Replace process image @ read(): Read from file
@ exit(): Terminate process o write(): Write to file
e wait(): Wait for child @ close(): Close file
@ getpid(): Get process ID @ 1seek(): Move file pointer

These simple calls combine to build complex programs. UNIX philosophy: simple tools,
powerful combinations.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

Hands-on: Tracing System Calls

Use strace to see what syscalls a program makes:

$ strace ./hello

execve("./hello", ["./hello"], ...) =0

brk (NULL) = 0x55a8c8d4000
mmap (NULL, 8192, ...) = 0x7£2a8c000000
write(l, "Hello, 0S!\n", 11) = 11

exit_group (0) =7

What we learn:
@ Every I/O operation is a system call
@ Even simple programs make many syscalls

@ The kernel does a lot of work behind the scenes

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

More strace Examples

Count syscalls by type:

$ strace -c 1s

% time calls syscall
25.00 10 read
20.00 8 write
15.00 12 openat
10.00 12 close

Useful strace options:
@ -e trace=file: Only file-related syscalls
@ -p PID: Attach to running process
@ -t: Show timestamps
o -f: Follow child processes

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS

January 28, 2026

Key Takeaways

@ OS Definition: Resource manager + abstraction provider
@ History: From batch processing to cloud computing

© Kernel Designs: Monolithic vs microkernel trade-offs

@ Protection: User mode vs kernel mode boundary

© System Calls: The only way to access OS services

Core Principle

The OS creates the illusion that each program has the machine to itself, while safely sharing
resources among all programs.

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

This Week's Tasks

Quiz 1: Introduction concepts (due before next class)
Reading: Textbook Chapters 1-2

Hands-on: Try strace on various programs
Next Week: Process Management

Process lifecycle
Process Control Block
fork() and exec()
Context switching

Questions?

Faye Chi Zhang, Richard Cai, Ping Ji (CUNY Hunter) Theory of OS January 28, 2026

	Course Overview
	What is an Operating System?
	OS History and Evolution
	System Architecture
	User Mode vs Kernel Mode
	System Calls
	Summary

