
Theory of Operating Systems
Week 2: Process Management

Faye (Chi Zhang)

CUNY Hunter

February 4, 2026

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 1 / 37

Today’s Outline

1 What is a Process?

2 Process vs Program

3 Process Memory Layout

4 Process Lifecycle and States

5 Process Control Block (PCB)

6 Process Creation: fork() and exec()

7 Process Termination and wait()

8 Context Switching

Duration: 2 hours (with 10-minute break)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 2 / 37

What is a Process?

Definition:

A program in execution

An instance of a running program

The basic unit of work in an OS

Key Perspective:

A process is a state machine

Each instruction changes state

OS manages state transitions

A Process Includes:

Program code (text section)

Current activity (PC, registers)

Stack (temporary data)

Data section (global variables)

Heap (dynamically allocated memory)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 3 / 37

Process vs Program

Program Process

Static entity (file on disk) Dynamic entity (in memory)
Contains instructions Executing instructions
No resources allocated Resources allocated (CPU, memory)
Passive Active
Can exist without process Requires program to exist
Single copy on disk Multiple instances possible

Analogy

A program is like a recipe. A process is like actually cooking the dish. You can cook multiple
dishes from the same recipe simultaneously.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 4 / 37

Process Memory Layout

Stack

grows down

↓

(free space)

↑
grows upHeap

Data (BSS + initialized)

Text (Code)

Low Address

High Address

Memory Sections:

Text: Program instructions (read-only)

Data: Global/static variables

Initialized data
BSS (uninitialized, zero-filled)

Heap: Dynamic allocation (malloc, new)

Stack: Function calls, local variables

Note: Stack and heap grow toward each other!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 5 / 37

Understanding Memory Sections

int global_var = 10; // Data section (initialized)

int uninitialized_var; // BSS section

int main() {

int local_var = 5; // Stack

static int static_var; // Data section

int *ptr = malloc (100); // Heap allocation

return 0; // Code in Text section

}

Key Points

Text section is typically read-only (protection)

Stack automatically manages function call frames

Heap requires explicit allocation/deallocationFaye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 6 / 37

Multiple Processes from One Program

Same program, multiple processes:

Each process has its own:

Address space (isolated memory)
Process ID (PID)
CPU state (registers, PC)
Open files and resources

Example:

Open 3 terminal windows

Each runs /bin/bash

Each is a separate process

Different PIDs

Independent execution

Don’t share memory

Isolation

Process isolation is fundamental to OS security and stability. One process cannot corrupt
another’s memory.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 7 / 37

Process Memory Layout (Detailed)

Typical Program Memory:

Text: Executable code

Data: Initialized globals

BSS: Uninitialized globals

Heap: Dynamic memory

Stack: Function frames

Environment variables

Command-line arguments

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 8 / 37

Process States

New Ready Running

Waiting

Terminated
admitted dispatch exit

I/O wait
I/O done

preempt

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 9 / 37

Process State Descriptions

New Process is being created

Memory being allocated, PCB initialized

Ready Process waiting to be assigned to CPU

Has all resources except CPU
Sitting in the ready queue

Running Instructions are being executed

Only one process per CPU core at a time

Waiting/Blocked Process waiting for some event

I/O completion, signal, resource availability

Terminated Process has finished execution

Resources being deallocated

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 10 / 37

Process State Diagram

State Machine View:

Created: Process initialization

Ready: Waiting for CPU

Running: Executing instructions

Blocked: Waiting for I/O

Terminated: Finished execution

Key Transitions:

Scheduler dispatch

Timer interrupt

I/O request/completion

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 11 / 37

State Transitions in Detail

Transition Cause Who Initiates

New → Ready Admitted to system OS
Ready → Running Scheduled by scheduler OS
Running → Ready Timer interrupt (preemption) OS
Running → Waiting I/O request, wait for event Process
Waiting → Ready I/O complete, event occurs OS
Running → Terminated exit() call or error Process/OS

Important

A process cannot move directly from Waiting to Running. It must go through Ready first—the
scheduler decides who runs.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 12 / 37

Process Queues

Ready Queue:

All processes in Ready state

Waiting for CPU time

Scheduler picks next process

Various scheduling algorithms

Wait Queues:

One queue per device/event

Processes waiting for I/O

Move to Ready when done

Ready Queue: P1 P3 P7 CPU

Disk Queue: P2 P5

Network Queue: P4

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 13 / 37

Process Control Block (PCB)

Definition: Data structure containing all information about a process

Also Called:

Task Control Block (TCB)

Process Descriptor

In Linux: task struct

Purpose:

OS’s complete knowledge of process

Enables context switching

Stored in kernel memory

PCB
Process ID

Process State

Program Counter

CPU Registers

Memory Info

I/O Status

Scheduling Info

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 14 / 37

PCB Contents in Detail

Identification:

Process ID (PID)

Parent process ID (PPID)

User ID (UID), Group ID (GID)

CPU State:

Program counter

Stack pointer

General-purpose registers

Status/flags register

Memory Management:

Page table pointer

Memory limits

Segment registers

Scheduling:

Process state

Priority

CPU time used

I/O:

Open file descriptors

Current working directory

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 15 / 37

Linux: task struct

struct task_struct {

volatile long state; // Process state

pid_t pid; // Process ID

pid_t tgid; // Thread group ID

struct mm_struct *mm; // Memory descriptor

struct fs_struct *fs; // Filesystem info

struct files_struct *files; // Open files

struct task_struct *parent; // Parent process

struct list_head children; // Child processes

unsigned int policy; // Scheduling policy

int prio; // Priority

// ... hundreds more fields (several KB total)

};

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 16 / 37

Viewing Process Information

List all processes

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.1 169436 13140 ? Ss 10:00 0:01 /sbin/init

faye 1234 0.5 1.2 284512 98304 pts/0 Sl 10:05 0:15 vim file.c

Process tree

$ pstree -p

systemd(1)---bash(1000)---vim (1234)

Detailed process info

$ cat /proc /1234/ status

Name: vim

State: S (sleeping)

Pid: 1234

PPid: 1000

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 17 / 37

10-Minute Break

We’ll continue with Process Creation

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 18 / 37

How Are Processes Created?

Events that create processes:

1 System boot: Init/systemd creates initial processes

2 User request: Double-click, command line

3 Process spawn: Running process creates child

4 Batch job: Scheduled task execution

In UNIX/Linux:

All processes created by existing process

First process: init (PID 1) or systemd

Process tree: parent-child relationships

fork() creates new process

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 19 / 37

The fork() System Call

fork() creates an exact copy of the calling process

#include <unistd.h>

#include <stdio.h>

int main() {

printf("Before fork\n");

pid_t pid = fork ();

if (pid < 0) {

perror("fork failed");

} else if (pid == 0) {

printf("Child: my PID = %d\n", getpid ());

} else {

printf("Parent: child PID = %d\n", pid);

}

return 0;

}

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 20 / 37

Understanding fork()

What fork() does:

Creates new process (child)

Child is copy of parent

Both continue from fork()

What’s copied:

Address space

Open file descriptors

Environment variables

Current working directory

What’s different:

PID (child gets new ID)

Return value of fork()

Parent: child’s PID
Child: 0

Parent PID

Resource usage counters

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 21 / 37

fork() Execution Flow

Parent Process

fork()

Parent Child

returns child PID returns 0

continues continues

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 22 / 37

Copy-on-Write (COW) Optimization

Problem: Copying entire address space is expensive

Solution: Copy-on-Write

Don’t copy memory immediately

Parent and child share same physical pages

Pages marked as read-only

When either writes → page fault

Only then is the page copied

Benefit

If child immediately calls exec(), no memory copying needed at all! This is the common
pattern (fork + exec).

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 23 / 37

The exec() Family

exec() replaces current process image with new program

#include <unistd.h>

int main() {

pid_t pid = fork ();

if (pid == 0) {

// Child: replace with "ls" program

execlp("ls", "ls", "-la", NULL);

// If exec returns , it failed

perror("exec failed");

exit (1);

}

// Parent continues here

wait(NULL); // Wait for child

return 0;

}

Note: exec() never returns on success!
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 24 / 37

exec() Family Variants

Function Description

execl Arguments as list
execv Arguments as vector (array)
execlp List + search PATH
execvp Vector + search PATH
execle List + custom environment
execve Vector + environment (base syscall)

Naming convention:

l: Arguments as list (comma-separated)

v: Arguments as vector/array

p: Search PATH for executable

e: Specify environment variables

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 25 / 37

The fork() + exec() Pattern

Standard pattern for running new programs:

1 Parent calls fork() to create child

2 Child calls exec() to load new program

3 Parent optionally calls wait() for child

Why separate fork and exec?

Flexibility between fork and exec

Child can modify itself before exec:

Redirect I/O (stdin, stdout, stderr)
Change working directory
Set environment variables
Close unwanted file descriptors
Set up pipes for communication

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 26 / 37

How a Shell Works

while (1) {

printf("$ ");

char *cmd = read_command ();

pid_t pid = fork ();

if (pid == 0) {

// Child: execute command

exec(cmd);

perror("exec failed");

exit (1);

} else {

// Parent: wait for child

int status;

waitpid(pid , &status , 0);

}

}

This is the core loop of any UNIX shell (bash, zsh, etc.)!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 27 / 37

Process Termination

Normal termination:

Return from main()

Call exit(status)

Call exit(status) - immediate, no cleanup

Abnormal termination:

Signal received (SIGKILL, SIGSEGV, etc.)

Unhandled exception

Killed by another process (kill command)

What happens:

Resources deallocated (memory, files)

Exit status saved for parent

Process becomes ”zombie” until parent calls wait()

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 28 / 37

Waiting for Child: wait()

#include <sys/wait.h>

int main() {

pid_t pid = fork ();

if (pid == 0) {

sleep (2);

exit (42); // Exit with status 42

} else {

int status;

pid_t child = wait(& status);

if (WIFEXITED(status)) {

printf("Child %d exited with %d\n",

child , WEXITSTATUS(status));

}

}

return 0;

}
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 29 / 37

wait() Variants and Status Macros

Wait functions:

wait(&status): Wait for any child

waitpid(pid, &status, options): Wait for specific child

waitid(): More flexible waiting

Status macros:

WIFEXITED(status): True if normal exit

WEXITSTATUS(status): Get exit code

WIFSIGNALED(status): True if killed by signal

WTERMSIG(status): Get signal number

WIFSTOPPED(status): True if stopped

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 30 / 37

Zombie and Orphan Processes

Zombie Process:

Child has terminated

Parent hasn’t called wait()

PCB still exists (holds exit status)

Shows as ’Z’ in ps

Wastes system resources

Parent must reap it!

Orphan Process:

Parent terminated first

Child still running

Adopted by init (PID 1)

init will reap when done

Not a problem

Warning

Too many zombies exhaust PID space and system resources. Always reap your children!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 31 / 37

What is a Context Switch?

Definition: Switching the CPU from one process to another

1 Save state of running process to its PCB

2 Load state of next process from its PCB

3 Jump to saved program counter of new process

When does it happen?

Timer interrupt (time slice expired)

Process blocks (I/O, wait, etc.)

Higher priority process becomes ready

Process terminates

System call that causes reschedule

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 32 / 37

Context Switch: Step by Step

1 Interrupt/Trap occurs: Timer, syscall, or I/O

2 Save CPU state: Push registers to kernel stack

3 Save to PCB: Copy state to process’s PCB

4 Update state: Mark old process as Ready/Waiting

5 Select next: Scheduler chooses next process

6 Update state: Mark new process as Running

7 Load from PCB: Restore registers from new PCB

8 Switch address space: Load new page table

9 Jump: Set PC to saved value

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 33 / 37

Context Switch Visualization

P
ro
ce
ss

P
0

P
ro
ce
ss

P
1

O
S
K
er
n
el

interrupt

save P0

idle
load P1

runninginterrupt

save P1

load P0

running

Time

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 34 / 37

The Cost of Context Switching

Direct costs:

Save/restore registers: microseconds

Switch page tables

Flush TLB (Translation Lookaside Buffer)

Kernel code execution

Indirect costs (often larger):

Cache pollution: New process’s data not cached

TLB misses: Address translations not cached

Pipeline flush: CPU pipeline restarts

Branch predictor: Predictions invalidated

Typical total cost: 1-100 microseconds

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 35 / 37

Key Takeaways

1 Process: Program in execution with code, data, stack, heap

2 States: New → Ready → Running → Waiting → Terminated

3 PCB: All information OS needs about a process

4 fork(): Creates child process (copy of parent)

5 exec(): Replaces process image with new program

6 wait(): Parent waits for child termination (reaps zombie)

7 Context switch: Save old state, load new state, expensive!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 36 / 37

This Week’s Tasks

Quiz 2: Process management concepts

Reading: Textbook Chapters 3-5

Assignment 1: Process Scheduling Simulator (Released!)

Implement process state transitions
Due: February 18

Hands-on: Write programs using fork(), exec(), wait()

Next Week: Process Scheduling Algorithms

FCFS, SJF, Round Robin, Priority
Turnaround time, response time, throughput

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 37 / 37

	What is a Process?
	Process Lifecycle
	Process Control Block
	Process Creation
	Process Termination
	Context Switching
	Summary

