Faye (Chi Zhang) (CUNY Hunter)

Theory of Operating Systems

Week 2: Process Management

Faye (Chi Zhang)
CUNY Hunter

February 4, 2026

Theory of OS

February 4, 2026

Today's Outline

© What is a Process?

Process vs Program

Process Memory Layout

Process Lifecycle and States
Process Control Block (PCB)
Process Creation: fork() and exec()

Process Termination and wait()

©0 00000

Context Switching

Duration: 2 hours (with 10-minute break)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

What is a Process?

Definition:

e A program in execution A Process Includes:

@ An instance of a running program e Program code (text section)
@ The basic unit of work in an OS o Current activity (PC, registers)
Key Perspective: e Stack (temporary data)
o A process is a state machine e Data section (global variables)
@ Heap (dynamically allocated memory)

@ Each instruction changes state

@ OS manages state transitions

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

Process vs Program

Program Process

Static entity (file on disk) Dynamic entity (in memory)

Contains instructions Executing instructions

No resources allocated Resources allocated (CPU, memory)
Passive Active

Can exist without process Requires program to exist

Single copy on disk Multiple instances possible

A program is like a recipe. A process is like actually cooking the dish. You can cook multiple
dishes from the same recipe simultaneously.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

Process Memory Layout

High Address

Stack
I J Memory Sections:
rows down
g e Text: Program instructions (read-only)
A e Data: Global/static variables
(free space) o Initialized data
o BSS (uninitialized, zero-filled)
T

@ Heap: Dynamic allocation (malloc, new)
Heap Igro""s up e Stack: Function calls, local variables

Data (BSS + initialized)
Text (Code)
Low Address

Note: Stack and heap grow toward each other!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 5/37

Understanding Memory Sections

int global_var = 10; // Data section (initialized)
int uninitialized_var; // BSS section

int main() {
int local_var = 5; // Stack
static int static_var; // Data section

int *ptr = malloc(100); // Heap allocation

return O; // Code in Text section

Key Points

@ Text section is typically read-only (protection)

@ Stack automatically manages function call frames

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

Multiple Processes from One Program

Example:
Same program, multiple processes: @ Open 3 terminal windows
@ Each process has its own: e Each runs /bin/bash
o Address space (isolated memory) o Each is a separate process
e Process ID (PID))
o CPU state (registers, PC) o Different PIDs
o Open files and resources @ Independent execution

@ Don't share memory

Process isolation is fundamental to OS security and stability. One process cannot corrupt
another's memory.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

Process Memory Layout (Detailed)

Typical Program Memory:
@ Text: Executable code
@ Data: Initialized globals
@ BSS: Uninitialized globals
Heap: Dynamic memory
Stack: Function frames

Environment variables

Command-line arguments

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

stack

heap

uninitialized data

bss

initialized data

data

text

February 4, 2026

Process States

dispatch

-

admitted .
Terminated

1/0 wait

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

Process State Descriptions

New Process is being created
@ Memory being allocated, PCB initialized
Ready Process waiting to be assigned to CPU

@ Has all resources except CPU
@ Sitting in the ready queue

Running Instructions are being executed
@ Only one process per CPU core at a time
Wiaiting/Blocked Process waiting for some event
@ |/O completion, signal, resource availability
Terminated Process has finished execution
@ Resources being deallocated

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

Process State Diagram
State Machine View:
o . Created Terminated
@ Created: Process initialization

@ Ready: Waiting for CPU /
@ Running: Executing instructions Main Memory
@ Blocked: Waiting for I/O

@ Terminated: Finished execution ~a

.. Blocked
Key Transitions:

@ Scheduler dispatch

@ Timer interrupt

@ 1/0 request/completion

Swapped out and waiting Swapped out and blocked

Source: Wikimedia Commons

Page file / swap space

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 11/37

State Transitions in Detail

Transition Cause Who Initiates
New — Ready Admitted to system (ON)

Ready — Running Scheduled by scheduler (0N}

Running — Ready Timer interrupt (preemption) OS

Running — Waiting I/O request, wait for event Process
Waiting — Ready I/O complete, event occurs 0S

Running — Terminated exit() call or error Process/OS

A process cannot move directly from Waiting to Running. It must go through Ready first—the
scheduler decides who runs.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 12 /37

Process Queues

Ready Queue:
@ All processes in Ready state
e Waiting for CPU time

@ Scheduler picks next process eady Queue

@ Various scheduling algorithms
&8 Disk Queue:
Wait Queues:
Q _ Network Queue
@ One queue per device/event

@ Processes waiting for 1/0

@ Move to Ready when done

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 4, 2026

Process Control Block (PCB)

Definition: Data structure containing all information about a process

Also Called: PCB
@ Task Control Block (TCB) Process ID
@ Process Descriptor Process State
@ In Linux: task_struct Program Counter

CPU Registers

Purpose: Memory Info
@ OS's complete knowledge of process 1/O Status
@ Enables context switching Scheduling Info

@ Stored in kernel memory

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 14 /37

PCB Contents in Detail

Memory Management:

Identification: o Page table pointer
@ Process ID (PID) e Memory limits
e Parent process ID (PPID) @ Segment registers
e User ID (UID), Group ID (GID) Scheduling:
CPU State: @ Process state
@ Program counter @ Priority
@ Stack pointer o CPU time used
o General-purpose registers 1/0:
® Status/flags register @ Open file descriptors

o Current working directory

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 15 /37

Linux: task_struct

struct task_struct {

volatile long state; // Process state
pid_t pid; // Process ID

pid_t tgid; // Thread group ID
struct mm_struct *mm; // Memory descriptor
struct fs_struct *fs; // Filesystem info

struct files_struct xfiles; // Open files

struct task_struct #*parent; // Parent process
struct list_head children; // Child processes

unsigned int policy; // Scheduling policy
int prio; // Priority
// ... hundreds more fields (several KB total)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 16 /37

Viewing Process Information

List all processes

$ ps aux

USER PID %CPU %MEM VsSz RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 169436 13140 7 Ss 10:00 0:01 /sbin/init
faye 1234 0.5 1.2 284512 98304 pts/0 S1 10:05 0:15 vim file.c

Process tree
$ pstree -p
systemd (1) ---bash (1000) ---vim (1234)

Detailed process info
$ cat /proc/1234/status

Name : vim
State: S (sleeping)
Pid: 1234
PPid: 1000

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 17 /37

10-Minute Break

We'll continue with Process Creation

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 18 /37

How Are Processes Created?

Events that create processes:
© System boot: Init/systemd creates initial processes
@ User request: Double-click, command line
© Process spawn: Running process creates child
@ Batch job: Scheduled task execution

In UNIX/Linux:

All processes created by existing process

°

@ First process: init (PID 1) or systemd
@ Process tree: parent-child relationships
°

fork() creates new process

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 19 /37

The fork() System Call

fork() creates an exact copy of the calling process

#include <unistd.h>
#include <stdio.h>

int main() {
printf ("Before fork\n");
pid_t pid = fork();

if (pid < 0) {
perror ("fork failed");

} else if (pid == 0) {
printf ("Child: my PID = %d\n", getpid());
} else {

printf ("Parent: child PID = %d\n", pid);
}

return O;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 20/37

Understanding fork()

What fork() does:

o Creates new process (child) What's diff t
at’s different:

@ PID (child gets new ID)
@ Return value of fork()

What'’s copied: o Parent: child's PID
' o Child: 0

@ Parent PID

@ Resource usage counters

@ Child is copy of parent

@ Both continue from fork()

@ Address space
@ Open file descriptors
@ Environment variables

@ Current working directory

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 21/37

fork() Execution Flow

Faye (Chi Zhang) (CUNY Hunter)

Parent Process

for¢k()

Parent

Child

returns ihﬂd PID

continues

Theory of OS

retuTns 0

continues

February 4, 2026

Copy-on-Write (COW) Optimization

Problem: Copying entire address space is expensive

Solution: Copy-on-Write
@ Don't copy memory immediately
Parent and child share same physical pages
Pages marked as read-only
When either writes — page fault

Only then is the page copied

Benefit

If child immediately calls exec(), no memory copying needed at all! This is the common
pattern (fork + exec).

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

The exec() Family

exec() replaces current process image with new program

#include <unistd.h>

int main() {
pid_t pid = fork();

if (pid == 0) {
// Child: replace with "1ls" program
execlp("1ls", "1s", "-la", NULL);
// If exec returns, it failed
perror ("exec failed");
exit (1);

+

// Parent continues here

wait (NULL); // Wait for child

return O;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026

exec() Family Variants

Function Description

execl Arguments as list

execv Arguments as vector (array)
execlp List + search PATH

execvp Vector + search PATH

execle List + custom environment

execve Vector + environment (base syscall)

Naming convention:
@ 1: Arguments as list (comma-separated)
e v: Arguments as vector/array
@ p: Search PATH for executable
@ e: Specify environment variables

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 25 /37

The fork() + exec() Pattern

Standard pattern for running new programs:
@ Parent calls fork() to create child
@ Child calls exec() to load new program

@ Parent optionally calls wait () for child

Why separate fork and exec?

o Flexibility between fork and exec

@ Child can modify itself before exec:
Redirect /O (stdin, stdout, stderr)
Change working directory

Set environment variables

Close unwanted file descriptors
Set up pipes for communication

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 26 /37

How a Shell Works

while (1) {
printf("$ ");
char *cmd = read_command () ;

pid_t pid = fork();

if (pid == 0) {
// Child: execute command
exec(cmd) ;
perror ("exec failed");
exit (1);

} else {
// Parent: wait for child
int status;
waitpid (pid, &status, 0);

}

This is the core loop of any UNIX shell (bash, zsh, etc.)!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 27 /37

Process Termination

Normal termination:
@ Return from main()
o Call exit(status)

o Call _exit(status) - immediate, no cleanup

Abnormal termination:
o Signal received (SIGKILL, SIGSEGV, etc.)
@ Unhandled exception

o Killed by another process (kill command)

What happens:
@ Resources deallocated (memory, files)
o Exit status saved for parent
@ Process becomes "zombie" until parent calls wait()

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 28 /37

Waiting for Child: wait()

#include <sys/wait.h>

int main () {
pid_t pid = fork();

if (pid == 0) {

sleep (2);

exit (42); // Exit with status 42
} else {

int status;
pid_t child = wait(&status);

if (WIFEXITED(status)) {
printf ("Child %d exited with %d\n",
child, WEXITSTATUS (status));

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 4, 2026

wait() Variants and Status Macros

Wait functions:
o wait(&status): Wait for any child
@ waitpid(pid, &status, options): Wait for specific child

@ waitid(): More flexible waiting

Status macros:

WIFEXITED(status): True if normal exit

@ WEXITSTATUS(status): Get exit code

@ WIFSIGNALED(status): True if killed by signal
°

°

WTERMSIG(status): Get signal number
WIFSTOPPED (status): True if stopped

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 30/37

Zombie and Orphan Processes

Zombie Process:
. . Orphan Process:
@ Child has terminated) i
, . @ Parent terminated first
@ Parent hasn't called wait()

o _ Child still running
PCB still exists (holds exit status)

Adopted by init (PID 1)

Shows as 'Z' in ps o
init will reap when done

Wastes system resources

Not a problem

Parent must reap it!

Too many zombies exhaust PID space and system resources. Always reap your children!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 31/37

What is a Context Switch?

Definition: Switching the CPU from one process to another

© Save state of running process to its PCB
@ Load state of next process from its PCB

© Jump to saved program counter of new process

When does it happen?

e Timer interrupt (time slice expired)
Process blocks (1/0, wait, etc.)
Higher priority process becomes ready

Process terminates

System call that causes reschedule

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 32/37

Context Switch: Step by Step

Interrupt/Trap occurs: Timer, syscall, or I/O
Save CPU state: Push registers to kernel stack
Save to PCB: Copy state to process's PCB
Update state: Mark old process as Ready/Waiting
Select next: Scheduler chooses next process
Update state: Mark new process as Running
Load from PCB: Restore registers from new PCB

Switch address space: Load new page table

0000000 O0CO

Jump: Set PC to saved value

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 33/37

ext Switch Visualization

Faye (Chi Zhang) (CUNY Hunter)

Time

idle

Process PO

.‘
=
5

ning

interrupt

save PO

load PO

OS Kernel

load P1

interrupt

save P1

Theory of OS

Procesg P1

February 4, 2026

The Cost of Context Switching

Direct costs:

Save/restore registers: microseconds

@ Switch page tables

@ Flush TLB (Translation Lookaside Buffer)
o

Kernel code execution

Indirect costs (often larger):
@ Cache pollution: New process's data not cached
o TLB misses: Address translations not cached
o Pipeline flush: CPU pipeline restarts
@ Branch predictor: Predictions invalidated

Typical total cost: 1-100 microseconds

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 35/37

Key Takeaways

Process: Program in execution with code, data, stack, heap
States: New — Ready — Running — Waiting — Terminated
PCB: All information OS needs about a process

fork(): Creates child process (copy of parent)

exec(): Replaces process image with new program

wait(): Parent waits for child termination (reaps zombie)

000000

Context switch: Save old state, load new state, expensive!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 36 /37

This Week's Tasks

Quiz 2: Process management concepts
Reading: Textbook Chapters 3-5

Assignment 1: Process Scheduling Simulator (Released!)
o Implement process state transitions
e Due: February 18
Hands-on: Write programs using fork(), exec(), wait()
Next Week: Process Scheduling Algorithms

e FCFS, SJF, Round Robin, Priority
e Turnaround time, response time, throughput

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 4, 2026 37/37

	What is a Process?
	Process Lifecycle
	Process Control Block
	Process Creation
	Process Termination
	Context Switching
	Summary

