
Theory of Operating Systems
Week 3: Process Scheduling Algorithms

Faye (Chi Zhang)

CUNY Hunter

February 11, 2026

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 1 / 35



Today’s Outline

1 The Scheduling Problem

2 Scheduling Metrics and Goals

3 First-Come First-Served (FCFS)

4 Shortest Job First (SJF)

5 Round Robin (RR)

6 Priority Scheduling

7 Multi-Level Feedback Queue (MLFQ)

8 Real-World Schedulers

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 2 / 35



Why Do We Need Scheduling?

The Fundamental Problem:

Many processes want to run

Limited number of CPUs (often just one per core)

Who gets the CPU? For how long?

The Scheduler’s Job:

Decide which process runs next

Decide how long it runs

Balance competing goals (fairness, efficiency, etc.)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 3 / 35



When Does Scheduling Occur?

Scheduling decisions happen when:

1 Process switches from Running to Waiting (I/O)

2 Process switches from Running to Ready (preemption)

3 Process switches from Waiting to Ready (I/O complete)

4 Process terminates

5 New process is created

Non-preemptive vs Preemptive

Non-preemptive: Process runs until it blocks or exits

Preemptive: OS can interrupt running process (timer)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 4 / 35



The Dispatcher

Dispatcher: Module that gives CPU control to selected process

Switching context

Switching to user mode

Jumping to proper location in program

Dispatch Latency: Time to stop one process and start another

Should be as fast as possible

Typically 1-10 microseconds on modern systems

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 5 / 35



Scheduling Metrics

How do we evaluate a scheduling algorithm?

Metric Definition

Turnaround Time Time from submission to completion
Tturnaround = Tcompletion − Tarrival

Response Time Time from submission to first response
Tresponse = Tfirst run − Tarrival

Throughput Number of processes completed per time
unit

CPU Utilization Percentage of time CPU is busy

Waiting Time Time spent in ready queue

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 6 / 35



Turnaround Time

Definition: Total time from arrival to completion

Tturnaround = Tcompletion − Tarrival

Includes:

Waiting time in ready queue

Execution time on CPU

Time waiting for I/O

Important for: Batch systems, background jobs

Goal

Minimize average turnaround time across all processes

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 7 / 35



Response Time

Definition: Time from arrival to first execution

Tresponse = Tfirst run − Tarrival

Why it matters:

Users perceive system as “snappy” or “slow”

Interactive applications need quick feedback

Even if total work takes time, starting quickly matters

Important for: Interactive systems, user-facing applications

Trade-off

Optimizing for response time often hurts turnaround time!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 8 / 35



Competing Goals

No scheduler can optimize everything:

Maximize:

CPU utilization

Throughput

Fairness

Minimize:

Turnaround time

Response time

Waiting time

Key Insight

Different workloads need different schedulers:

Batch systems: Optimize throughput

Interactive systems: Optimize response time

Real-time systems: Meet deadlines

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 9 / 35



First-Come First-Served (FCFS)

Algorithm:

Run processes in the order they arrive

Non-preemptive: run until complete or blocked

Simple FIFO queue

Example: Three jobs arrive at time 0

Process Arrival Burst Time

A 0 10
B 0 5
C 0 2

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 10 / 35



FCFS Example: Order A, B, C

Gantt Chart:

A (10) B (5) C

0 10 15 17

Turnaround Times:

A: 10 - 0 = 10

B: 15 - 0 = 15

C: 17 - 0 = 17

Average: (10 + 15 + 17)/3 = 14

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 11 / 35



FCFS: The Convoy Effect

What if C arrived first? (Order: C, B, A)

C B (5) A (10)

0 2 7 17

Turnaround Times:

C: 2, B: 7, A: 17

Average: (2 + 7 + 17)/3 = 8.67

Convoy Effect

Short processes stuck behind long process ⇒ poor average turnaround time. Order matters
dramatically!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 12 / 35



FCFS: Pros and Cons

Advantages:

Simple to implement

No starvation

Fair in arrival order sense

Low overhead

Disadvantages:

Convoy effect

Poor average turnaround

Not good for interactive

Order-dependent performance

Use Case

Batch processing systems where job order doesn’t matter much

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 13 / 35



Shortest Job First (SJF)

Algorithm:

Run the job with shortest burst time first

Provably optimal for minimizing average turnaround time

Non-preemptive version: once started, runs to completion

Same Example: Jobs A(10), B(5), C(2) arrive at time 0

C B A

0 2 7 17

Average Turnaround: (2 + 7 + 17)/3 = 8.67 (optimal!)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 14 / 35



SJF: The Arrival Problem

What if jobs arrive at different times?

Process Arrival Burst

A 0 10
B 1 5
C 2 2

Non-preemptive SJF: A starts at 0, runs to completion

A (10) C B
0 10 12 17

B and C arrive but must wait for A!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 15 / 35



Shortest Time-to-Completion First (STCF)

Also called: Preemptive SJF (PSJF) Algorithm:

When new job arrives, compare remaining times

Preempt if new job is shorter

Always run job with least remaining time

A C B A (remaining)

0 2 4 9 18

Optimal for average turnaround time!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 16 / 35



SJF: The Knowledge Problem

Critical Issue: How do we know job length?

We don’t! Future is unpredictable

User estimates are unreliable

Historical data may not apply

Approaches:

Exponential averaging: τn+1 = α · tn + (1− α) · τn
tn: actual length of last burst
τn: predicted length
α: weight (typically 0.5)

Learn from past behavior

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 17 / 35



SJF: Starvation Problem

Scenario: Continuous stream of short jobs

Short jobs keep arriving

Long job keeps getting pushed back

Long job may never run!

Starvation

A process waiting indefinitely because other processes always have higher priority.

Solution: Aging - gradually increase priority of waiting processes

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 18 / 35



10-Minute Break

We’ll continue with Round Robin

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 19 / 35



Round Robin (RR)

Algorithm:

Each process gets a small unit of CPU time (time quantum)

After quantum expires, process is preempted

Preempted process goes to end of ready queue

Circular execution of ready processes

Key Parameter: Time quantum (time slice)

Typically 10-100 milliseconds

Critical design choice!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 20 / 35



Round Robin Example

Jobs: A(10), B(5), C(2), all arrive at 0. Quantum = 2

A B C A B A B A A

0 2 4 6 10 13 17

Completion: C at 6, B at 13, A at 17
Response Times: A=0, B=2, C=4 ⇒ Avg = 2 (great!)
Turnaround: A=17, B=13, C=6 ⇒ Avg = 12 (worse than SJF)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 21 / 35



Time Quantum: The Critical Trade-off

Quantum too small:

Excellent response time

Too many context switches

High overhead

CPU spends time switching, not working

Quantum too large:

Fewer context switches

Poor response time

Degenerates to FCFS

Users notice delays

Rule of Thumb

Quantum should be large enough that context switch overhead is < 1% of quantum. Typical:
10-100 ms.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 22 / 35



Round Robin vs SJF

Aspect SJF RR

Turnaround time Optimal Worse
Response time Can be bad Good (bounded)
Starvation Possible No
Fairness Unfair to long jobs Fair
Knowledge needed Job length None
Preemptive Optional Yes

Key Insight

RR trades turnaround time for fairness and response time. If all jobs are same length, RR is
worst for turnaround!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 23 / 35



Priority Scheduling

Algorithm:

Assign priority to each process

Run highest priority process first

Can be preemptive or non-preemptive

Priority can be:

External: User/admin assigned

Internal: Based on measurable attributes

Memory requirements
Time limits
I/O to CPU burst ratio

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 24 / 35



Priority Scheduling Example

Process Burst Priority Arrival

A 10 3 (low) 0
B 1 1 (high) 0
C 2 4 (lowest) 0
D 1 2 0
E 5 2 0

Execution Order: B, D, E, A, C (by priority)

B D E A C
0 1 2 7 17 19

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 25 / 35



Priority Scheduling: Starvation and Aging

Problem: Low priority processes may starve

High priority processes keep arriving

Low priority never gets CPU

Solution: Aging

Gradually increase priority of waiting processes

Eventually, every process reaches high priority

Guarantees all processes eventually run

Example

Increase priority by 1 every second of waiting. A priority-10 process will reach priority-1 after 9
seconds.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 26 / 35



Multi-Level Feedback Queue (MLFQ)

Goal: Best of both worlds

Good response time for interactive jobs (like RR)

Good turnaround for batch jobs (like SJF)

Without knowing job length in advance!

Key Idea: Learn from past behavior

Jobs that use lots of CPU ⇒ probably batch (lower priority)

Jobs that quickly give up CPU ⇒ probably interactive (higher priority)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 27 / 35



MLFQ Structure

Multiple Queues:

Queue 0: Highest priority

Queue 1: Lower priority

...

Queue n: Lowest priority

Each queue may have different time quantum

High priority: short quantum

Low priority: long quantum

Q0 (high)P1 P4

Q1 P2

Q2 (low) P3 P5 P6

CPU

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 28 / 35



MLFQ: The Rules

1 If Priority(A) > Priority(B), A runs

2 If Priority(A) = Priority(B), run in Round Robin

3 New jobs enter at highest priority (top queue)

4 If a job uses its entire time slice, move down one queue

5 If a job gives up CPU before slice ends, stays in current queue

Intuition

Interactive jobs: Give up CPU quickly ⇒ stay at top

Batch/CPU-bound jobs: Use full slice ⇒ sink to bottom

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 29 / 35



MLFQ: Problems and Solutions

Problem 1: Gaming the system

Job issues I/O just before quantum ends

Stays at high priority unfairly

Solution: Account for total CPU time, not per-slice

Problem 2: Starvation of long-running jobs

Too many interactive jobs ⇒ batch jobs starve

Solution: Priority boost - periodically move all jobs to top queue

Problem 3: Changed behavior

CPU-bound job becomes interactive

Stuck at low priority

Solution: Priority boost helps here too

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 30 / 35



MLFQ: Refined Rules

1 If Priority(A) > Priority(B), A runs

2 If Priority(A) = Priority(B), run in Round Robin

3 New jobs start at highest priority

4 Once a job uses its time allotment at a given level (regardless of how many times it gave
up CPU), move down

5 After time period S, boost all jobs to top queue

Parameters to tune:

Number of queues

Time quantum per queue

Boost period S

Time allotment per level

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 31 / 35



Linux: Completely Fair Scheduler (CFS)

Goal: Fair CPU time for all processes

Tracks “virtual runtime” for each process

Always runs process with lowest virtual runtime

Weighted by nice value (-20 to +19)

Uses red-black tree for efficient selection

Nice Values:

Lower nice = higher priority (gets more CPU)

nice -n 10 command runs with lower priority

Default is 0

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 32 / 35



Scheduling Algorithm Comparison

Algorithm Preemptive Starvation Optimal Complexity

FCFS No No No O(1)
SJF No Yes Turnaround O(n)
STCF Yes Yes Turnaround O(n)
Round Robin Yes No No O(1)
Priority Both Yes No O(n)
MLFQ Yes No* No O(1)
CFS Yes No Fairness O(log n)

*With priority boost

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 33 / 35



Key Takeaways

1 Scheduling goals conflict: Can’t optimize everything

2 FCFS: Simple but convoy effect

3 SJF: Optimal turnaround but needs oracle

4 Round Robin: Fair but worse turnaround

5 Priority: Flexible but can starve

6 MLFQ: Learns from behavior, best of both worlds

7 Quantum choice: Critical trade-off

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 34 / 35



This Week’s Tasks

Quiz 3: Scheduling algorithms, Gantt charts

Reading: Textbook Chapters 5-7

Assignment 1: Implement FCFS, SJF, RR

Calculate turnaround and response times
Due: February 18

Next Week: Inter-Process Communication (IPC)

Pipes, message queues, shared memory
Producer-consumer problem

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 11, 2026 35 / 35


	The Scheduling Problem
	Scheduling Metrics
	First-Come First-Served (FCFS)
	Shortest Job First (SJF)
	Round Robin (RR)
	Priority Scheduling
	Multi-Level Feedback Queue
	Real-World Schedulers
	Summary

