Faye (Chi Zhang) (CUNY Hunter)

Theory of Operating Systems

Week 4: Inter-Process Communication

Faye (Chi Zhang)
CUNY Hunter

February 18, 2026

Theory of OS

February 18, 2026

Today's Outline

@ Why IPC? Cooperating Processes

@ IPC Models: Message Passing vs Shared Memory
© Pipes: Anonymous and Named

@ Message Queues

© Shared Memory

O Signals

@ The Producer-Consumer Problem

© Choosing the Right IPC Mechanism

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Processes Are Isolated

By design, processes cannot access each other’s memory

@ Each process has its own address space

@ Memory protection enforced by hardware
@ One process crashing doesn’t affect others
°

Security: Processes can’t read each other’s data

But sometimes processes need to communicate...
@ Share data

@ Coordinate actions

@ Send notifications

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Why Do Processes Need to Cooperate?

Information Sharing: Modularity:

@ Multiple apps access same file @ Microservices architecture

@ Database and web server @ Separate concerns

@ Clipboard between apps @ Independent development
Computation Speedup: Convenience:

o Parallel processing @ Shell pipelines

@ Divide large task o Client-server model

o Multiple cores @ Plugin architectures

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 4/32

IPC Mechanisms Overview

Mechanism Type Scope

Pipes Message Passing Parent-Child
Named Pipes (FIFOs) Message Passing Same machine
Message Queues Message Passing Same machine
Shared Memory Shared Memory ~ Same machine
Signals Notification Same machine
Sockets Message Passing Network

Today’s Focus: Pipes, Message Queues, Shared Memory, Signals

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 5/32

Two Fundamental IPC Models

Message Passing: Shared Memory:
@ Processes exchange messages @ Processes share memory region
@ OS handles data transfer Direct read/write access
Fastest IPC method

Needs synchronization

@ send() and receive() operations

o Easier to program

@ Higher overhead (syscalls) More complex

msg

P1 Kernel P2 P1 ¢ Shared F— P2

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 6/32

Message Passing vs Shared Memory

Aspect Message Passing Shared Memory
Speed Slower (kernel involved) Faster (direct access)
Synchronization Built-in Programmer's job
Data size Better for small messages Better for large data
Complexity Simpler API More complex
Network support Yes (sockets) No (same machine)

When to use which?

@ Message Passing: Coordination, small data, different machines

@ Shared Memory: Large data transfer, high performance needs

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Pipes: The Simplest IPC

Definition: A unidirectional byte stream between two processes

@ Data flows in one direction only

e FIFO order: First In, First Out

@ Limited capacity (buffer in kernel)

o write() blocks if full, read () blocks if empty

Writer Pipe (buffer) Reader

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Unix Pipeline Concept

Text terminal
Pipeline Philosophy:

@ Connect simple programs Keyboard

. stdin
@ Each does one thing well

) Program 1
@ Data flows through pipes

stdout/stdin

stdout/stdin

@ Powerful combinations

Example:

@ cat file | grep pattern | wc -1

@ Three processes connected by pipes

Source: Wikimedia Commons stdout

Program 3

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 9/32

Creating Pipes: pipe()

#include <unistd.h>

int main() {
int fd[2]; // £fd[0] = read end, fd[1]

if (pipe(fd) == -1) {
perror ("pipe failed");
exit (1);

}

// Now f£d[0] and fd[1] are connected
// Write to fd[1], read from fd[O0]

return O;

3

write end

Note: Pipe exists only in kernel memory, no file on disk

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 18, 2026

Pipes Between Parent and Child

int f£d[2];
pipe (£d);

pid_t pid = fork();

if (pid == 0) {
// Child: read from pipe
close(fd[1]); // Close unused write end
char buf [100];
read (fd[0], buf, sizeof (buf));
printf ("Child received: %s\n", buf);
close (£fd [0]);

} else {
// Parent: write to pipe
close(£fd [0]); // Close unused read end
write (fd[1], "Hello from parent!", 18);
close(fd[1]);
wait (NULL) ;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Shell Pipes: The — Operator

$ cat file.txt | grep "error" | wc -1

What happens:
@ Shell creates two pipes
@ Forks three child processes
© Redirects stdout — stdin via pipes

@ Each process runs independently

e e g e e

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Named Pipes (FIFOs)

Problem with anonymous pipes: Only work between related processes

Solution: Named pipes (FIFOs)
@ Have a name in the filesystem
@ Any process can open and use
@ Persist until explicitly deleted

Create a named pipe
$ mkfifo /tmp/myfifo

In terminal 1 (blocks until reader connects)
$ echo "Hello" > /tmp/myfifo

In terminal 2
$ cat /tmp/myfifo
Hello

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Named Pipes in C

#include <sys/stat.h>
#include <fcntl.h>

// Create FIFO
mkfifo("/tmp/myfifo", 0666) ;

// Writer process

int fd = open("/tmp/myfifo", O_WRONLY);
write(fd, "Hello", 6);

close (fd);

// Reader process (different program)
int fd = open("/tmp/myfifo", O_RDONLY);
char buf [100];

read (fd, buf, sizeof (buf));

close (fd) ;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

10‘ M inute Bl‘ea k We'll continue with Message Queues

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Message Queues

Definition: A queue of messages stored in the kernel

Messages have type and data
Multiple readers/writers supported

Messages can be retrieved by type

Persist until explicitly removed

Advantages over pipes:
@ Message boundaries preserved
@ Can select messages by type
e Multiple senders/receivers
o

No need for reader to be running when sending

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

POSIX Message Queues

#include <mqueue.h>

// Sender

mgd_t mg = mq_open("/myqueue", O_CREAT | O_WRONLY, 0644, NULL);
mq_send(mq, "Hello", 6, 0); // priority O

mq_close(mq);

// Receiver

mgd_t mgq = mq_open("/myqueue", O_RDONLY);
char buf [256];

unsigned int priority;

mg_receive(mq, buf, 256, &priority);
printf ("Received: %s\n", buf);
mgq_close (mq) ;

mq_unlink ("/myqueue"); // Remove queue

Compile with: gcc -1rt program.c

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Message Queue Properties

Key Attributes:
@ mqg_maxmsg: Maximum number of messages
@ mq_msgsize: Maximum size of each message

o mq_curmsgs: Current number of messages in queue

Blocking Behavior:
e mg_send() blocks if queue is full
@ mq.receive() blocks if queue is empty

@ Non-blocking mode available with 0_NONBLOCK

Priority: Messages with higher priority delivered first

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Shared Memory: The Fastest IPC

Definition: Memory region accessible by multiple processes

@ Same physical memory, different virtual addresses
@ No kernel involvement for read/write (after setup)
@ Fastest IPC mechanism
@ Requires synchronization!
Process A Process B
hared
Virtual Addr emory Virtual Addr

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

POSIX Shared Memory: Creating

#include <sys/mman.h>
#include <fcntl.h>

// Create shared memory object
int fd = shm_open("/myshm", O_CREAT | O_RDWR, 0666);

// Set size
ftruncate (fd, 4096);

// Map to address space
char *ptr = mmap (NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

// Now ptr points to shared memory
sprintf (ptr, "Hello from process A!");

// When done
munmap (ptr, 4096);
close (fd);

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

POSIX Shared Memory: Reading

// Another process can access the same memory

int fd = shm_open("/myshm", O_RDONLY, 0666);

char *ptr = mmap (NULL, 4096, PROT_READ,
MAP_SHARED, fd, 0);

printf ("Read from shared memory: %s\n", ptr);

munmap (ptr, 4096);
close (fd);

No synchronization here! If both processes write simultaneously, data corruption occurs. Need
semaphores or mutexes.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

The Synchronization Problem

Without synchronization:
@ Race conditions: Result depends on timing
@ Data corruption: Partial writes

@ Lost updates: One overwrites another

Solutions (covered in Week 6):
@ Semaphores
@ Mutexes

@ Condition variables

We'll cover synchronization in detail next week. For now, understand that shared memory
needs coordination.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Signals: Asynchronous Notifications

Definition: Software interrupts sent to a process

Notify process of an event

Can interrupt normal execution

Process can handle, ignore, or use default action
Limited data: just the signal number

Common signals:

Signal Number Default Action

SIGINT 2 Terminate (Ctrl+C)

SIGKILL 9 Terminate (cannot be caught)
SIGSEGV 11 Core dump (segfault)
SIGTERM 15 Terminate (polite request)
SIGCHLD 17 Ignore (child terminated)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Sending and Handling Signals

#include <signal.h>

void handler (int sig) {
printf ("Caught signal %d\n", sig);
}

int main() {
// Install signal handler
signal (SIGINT, handler);

// 0Or use sigaction (recommended)
struct sigaction sa;
sa.sa_handler = handler;
sigaction (SIGINT, &sa, NULL);

// Send signal to another process
kill (pid, SIGTERM);

while (1) pause(); // Wait for signals
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Signal Use Cases

Common uses:
@ Process control: Kill, stop, continue
@ Notification: Child exited, alarm timer
@ Error handling: Segfault, bus error
o User-defined: SIGUSR1, SIGUSR2

Limitations:

e No data payload (just signal number)

@ Signals can be lost (not queued by default)
e Handler must be careful (async-signal-safe)
°

Not suitable for complex IPC

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

The Producer-Consumer Problem

Classic IPC problem:
@ Producer: Creates data items
@ Consumer: Uses data items

o Buffer: Shared storage between them

Challenges:
@ Producer must wait if buffer is full
@ Consumer must wait if buffer is empty

@ Need to coordinate access to buffer

Producer Buffer —Consume

=

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Producer-Consumer with Pipes

int £d4[2];
pipe (£4d);

if (fork() == 0) {
// Producer
close (£fd[0]);
for (int i = 0; i < 10; i++) {
int item = produce();
write(fd[1], &item, sizeof (item));
}
close(fd[1]);
} else {
// Consumer
close(fd[1]);
int item;
while (read(fd[0], &item, sizeof (item)) > 0) {
consume (item) ;

}
close (£fd [0]);
Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 18, 2026 27/32

Bounded Buffer Problem

More complex version:
o Fixed-size buffer (e.g., 10 slots)
@ Multiple producers and consumers

@ Need explicit synchronization

Requires (covered in Week 6):
@ Mutex: Protect buffer access
e Semaphore (empty): Count empty slots
e Semaphore (full): Count full slots

Assignment 2

You'll implement this in your Producer-Consumer assignment!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

IPC Mechanism Comparison

Mechanism Speed Complexity Data Size Scope
Pipes Medium Low Stream Parent-child
Named Pipes Medium Low Stream Same machine
Message Queues Medium Medium Messages Same machine
Shared Memory Fast High Large Same machine
Signals Fast Medium None Same machine
Sockets Slow Medium Stream/Datagram Network

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Choosing the Right IPC Mechanism

Use Pipes when:
@ Simple parent-child communication
@ Unidirectional data flow

@ Shell-style pipelines

Use Message Queues when:
@ Multiple unrelated processes
o Need message boundaries/priorities

@ Asynchronous communication

Use Shared Memory when:
@ Large data, high performance
@ Willing to handle synchronization

@ Frequent data exchange

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

Key Takeaways

@ IPC needed because processes are isolated by design

@ Two models: Message passing (kernel involved) vs Shared memory (direct)
© Pipes: Simple, unidirectional, parent-child

© Named pipes: Like pipes, but unrelated processes

© Message queues: Messages with types/priorities

O Shared memory: Fastest, needs synchronization

@ Signals: Notifications, no data payload

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

This Week's Tasks

Quiz 4: IPC mechanisms
Reading: Textbook Chapters 3.4-3.7

Assignment 1 Due: Process Scheduling Simulator

Assignment 2 Released: Producer-Consumer Problem

e Use pipes or shared memory
e Due: March 4

Next Week: Threads and Concurrency

o Thread models, pthreads API
e Race conditions preview

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026

	Why Inter-Process Communication?
	IPC Models
	Pipes
	Message Queues
	Shared Memory
	Signals
	Producer-Consumer Problem
	Choosing the Right IPC
	Summary

