
Theory of Operating Systems
Week 4: Inter-Process Communication

Faye (Chi Zhang)

CUNY Hunter

February 18, 2026

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 1 / 32

Today’s Outline

1 Why IPC? Cooperating Processes

2 IPC Models: Message Passing vs Shared Memory

3 Pipes: Anonymous and Named

4 Message Queues

5 Shared Memory

6 Signals

7 The Producer-Consumer Problem

8 Choosing the Right IPC Mechanism

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 2 / 32

Processes Are Isolated

By design, processes cannot access each other’s memory

Each process has its own address space

Memory protection enforced by hardware

One process crashing doesn’t affect others

Security: Processes can’t read each other’s data

But sometimes processes need to communicate...

Share data

Coordinate actions

Send notifications

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 3 / 32

Why Do Processes Need to Cooperate?

Information Sharing:

Multiple apps access same file

Database and web server

Clipboard between apps

Computation Speedup:

Parallel processing

Divide large task

Multiple cores

Modularity:

Microservices architecture

Separate concerns

Independent development

Convenience:

Shell pipelines

Client-server model

Plugin architectures

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 4 / 32

IPC Mechanisms Overview

Mechanism Type Scope

Pipes Message Passing Parent-Child
Named Pipes (FIFOs) Message Passing Same machine
Message Queues Message Passing Same machine
Shared Memory Shared Memory Same machine
Signals Notification Same machine
Sockets Message Passing Network

Today’s Focus: Pipes, Message Queues, Shared Memory, Signals

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 5 / 32

Two Fundamental IPC Models

Message Passing:

Processes exchange messages

OS handles data transfer

send() and receive() operations

Easier to program

Higher overhead (syscalls)

Shared Memory:

Processes share memory region

Direct read/write access

Fastest IPC method

Needs synchronization

More complex

P1 Kernel P2

msg

P1 Shared P2

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 6 / 32

Message Passing vs Shared Memory

Aspect Message Passing Shared Memory

Speed Slower (kernel involved) Faster (direct access)
Synchronization Built-in Programmer’s job
Data size Better for small messages Better for large data
Complexity Simpler API More complex
Network support Yes (sockets) No (same machine)

When to use which?

Message Passing: Coordination, small data, different machines

Shared Memory: Large data transfer, high performance needs

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 7 / 32

Pipes: The Simplest IPC

Definition: A unidirectional byte stream between two processes

Data flows in one direction only

FIFO order: First In, First Out

Limited capacity (buffer in kernel)

write() blocks if full, read() blocks if empty

Writer Pipe (buffer) Reader

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 8 / 32

Unix Pipeline Concept

Pipeline Philosophy:

Connect simple programs

Each does one thing well

Data flows through pipes

Powerful combinations

Example:

cat file | grep pattern | wc -l

Three processes connected by pipes

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 9 / 32

Creating Pipes: pipe()

#include <unistd.h>

int main() {

int fd[2]; // fd[0] = read end , fd[1] = write end

if (pipe(fd) == -1) {

perror("pipe failed");

exit (1);

}

// Now fd[0] and fd[1] are connected

// Write to fd[1], read from fd[0]

return 0;

}

Note: Pipe exists only in kernel memory, no file on disk
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 10 / 32

Pipes Between Parent and Child

int fd[2];

pipe(fd);

pid_t pid = fork ();

if (pid == 0) {

// Child: read from pipe

close(fd [1]); // Close unused write end

char buf [100];

read(fd[0], buf , sizeof(buf));

printf("Child received: %s\n", buf);

close(fd [0]);

} else {

// Parent: write to pipe

close(fd [0]); // Close unused read end

write(fd[1], "Hello from parent!", 18);

close(fd [1]);

wait(NULL);

}

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 11 / 32

Shell Pipes: The — Operator

$ cat file.txt | grep "error" | wc -l

What happens:

1 Shell creates two pipes

2 Forks three child processes

3 Redirects stdout → stdin via pipes

4 Each process runs independently

cat pipe grep pipe wc

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 12 / 32

Named Pipes (FIFOs)

Problem with anonymous pipes: Only work between related processes

Solution: Named pipes (FIFOs)

Have a name in the filesystem

Any process can open and use

Persist until explicitly deleted

Create a named pipe

$ mkfifo /tmp/myfifo

In terminal 1 (blocks until reader connects)

$ echo "Hello" > /tmp/myfifo

In terminal 2

$ cat /tmp/myfifo

Hello

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 13 / 32

Named Pipes in C

#include <sys/stat.h>

#include <fcntl.h>

// Create FIFO

mkfifo("/tmp/myfifo", 0666);

// Writer process

int fd = open("/tmp/myfifo", O_WRONLY);

write(fd , "Hello", 6);

close(fd);

// Reader process (different program)

int fd = open("/tmp/myfifo", O_RDONLY);

char buf [100];

read(fd , buf , sizeof(buf));

close(fd);

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 14 / 32

10-Minute Break We’ll continue with Message Queues

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 15 / 32

Message Queues

Definition: A queue of messages stored in the kernel

Messages have type and data

Multiple readers/writers supported

Messages can be retrieved by type

Persist until explicitly removed

Advantages over pipes:

Message boundaries preserved

Can select messages by type

Multiple senders/receivers

No need for reader to be running when sending

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 16 / 32

POSIX Message Queues

#include <mqueue.h>

// Sender

mqd_t mq = mq_open("/myqueue", O_CREAT | O_WRONLY , 0644, NULL);

mq_send(mq , "Hello", 6, 0); // priority 0

mq_close(mq);

// Receiver

mqd_t mq = mq_open("/myqueue", O_RDONLY);

char buf [256];

unsigned int priority;

mq_receive(mq, buf , 256, &priority);

printf("Received: %s\n", buf);

mq_close(mq);

mq_unlink("/myqueue"); // Remove queue

Compile with: gcc -lrt program.c

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 17 / 32

Message Queue Properties

Key Attributes:

mq maxmsg: Maximum number of messages

mq msgsize: Maximum size of each message

mq curmsgs: Current number of messages in queue

Blocking Behavior:

mq send() blocks if queue is full

mq receive() blocks if queue is empty

Non-blocking mode available with O NONBLOCK

Priority: Messages with higher priority delivered first

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 18 / 32

Shared Memory: The Fastest IPC

Definition: Memory region accessible by multiple processes

Same physical memory, different virtual addresses

No kernel involvement for read/write (after setup)

Fastest IPC mechanism

Requires synchronization!

Process A

Virtual Addr
Shared
Memory

Process B

Virtual Addr

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 19 / 32

POSIX Shared Memory: Creating

#include <sys/mman.h>

#include <fcntl.h>

// Create shared memory object

int fd = shm_open("/myshm", O_CREAT | O_RDWR , 0666);

// Set size

ftruncate(fd, 4096);

// Map to address space

char *ptr = mmap(NULL , 4096, PROT_READ | PROT_WRITE ,

MAP_SHARED , fd , 0);

// Now ptr points to shared memory

sprintf(ptr , "Hello from process A!");

// When done

munmap(ptr , 4096);

close(fd);

shm_unlink("/myshm"); // Remove shared memoryFaye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 20 / 32

POSIX Shared Memory: Reading

// Another process can access the same memory

int fd = shm_open("/myshm", O_RDONLY , 0666);

char *ptr = mmap(NULL , 4096, PROT_READ ,

MAP_SHARED , fd , 0);

printf("Read from shared memory: %s\n", ptr);

munmap(ptr , 4096);

close(fd);

Warning

No synchronization here! If both processes write simultaneously, data corruption occurs. Need
semaphores or mutexes.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 21 / 32

The Synchronization Problem

Without synchronization:

Race conditions: Result depends on timing

Data corruption: Partial writes

Lost updates: One overwrites another

Solutions (covered in Week 6):

Semaphores

Mutexes

Condition variables

Preview

We’ll cover synchronization in detail next week. For now, understand that shared memory
needs coordination.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 22 / 32

Signals: Asynchronous Notifications

Definition: Software interrupts sent to a process

Notify process of an event

Can interrupt normal execution

Process can handle, ignore, or use default action

Limited data: just the signal number

Common signals:

Signal Number Default Action

SIGINT 2 Terminate (Ctrl+C)
SIGKILL 9 Terminate (cannot be caught)
SIGSEGV 11 Core dump (segfault)
SIGTERM 15 Terminate (polite request)
SIGCHLD 17 Ignore (child terminated)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 23 / 32

Sending and Handling Signals

#include <signal.h>

void handler(int sig) {

printf("Caught signal %d\n", sig);

}

int main() {

// Install signal handler

signal(SIGINT , handler);

// Or use sigaction (recommended)

struct sigaction sa;

sa.sa_handler = handler;

sigaction(SIGINT , &sa , NULL);

// Send signal to another process

kill(pid , SIGTERM);

while (1) pause (); // Wait for signals

} Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 24 / 32

Signal Use Cases

Common uses:

Process control: Kill, stop, continue

Notification: Child exited, alarm timer

Error handling: Segfault, bus error

User-defined: SIGUSR1, SIGUSR2

Limitations:

No data payload (just signal number)

Signals can be lost (not queued by default)

Handler must be careful (async-signal-safe)

Not suitable for complex IPC

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 25 / 32

The Producer-Consumer Problem

Classic IPC problem:

Producer: Creates data items

Consumer: Uses data items

Buffer: Shared storage between them

Challenges:

Producer must wait if buffer is full

Consumer must wait if buffer is empty

Need to coordinate access to buffer

Producer Buffer Consumer

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 26 / 32

Producer-Consumer with Pipes

int fd[2];

pipe(fd);

if (fork() == 0) {

// Producer

close(fd [0]);

for (int i = 0; i < 10; i++) {

int item = produce ();

write(fd[1], &item , sizeof(item));

}

close(fd [1]);

} else {

// Consumer

close(fd [1]);

int item;

while (read(fd[0], &item , sizeof(item)) > 0) {

consume(item);

}

close(fd [0]);

}

Pipe handles synchronization automatically!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 27 / 32

Bounded Buffer Problem

More complex version:

Fixed-size buffer (e.g., 10 slots)

Multiple producers and consumers

Need explicit synchronization

Requires (covered in Week 6):

Mutex: Protect buffer access

Semaphore (empty): Count empty slots

Semaphore (full): Count full slots

Assignment 2

You’ll implement this in your Producer-Consumer assignment!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 28 / 32

IPC Mechanism Comparison

Mechanism Speed Complexity Data Size Scope

Pipes Medium Low Stream Parent-child
Named Pipes Medium Low Stream Same machine
Message Queues Medium Medium Messages Same machine
Shared Memory Fast High Large Same machine
Signals Fast Medium None Same machine
Sockets Slow Medium Stream/Datagram Network

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 29 / 32

Choosing the Right IPC Mechanism

Use Pipes when:

Simple parent-child communication

Unidirectional data flow

Shell-style pipelines

Use Message Queues when:

Multiple unrelated processes

Need message boundaries/priorities

Asynchronous communication

Use Shared Memory when:

Large data, high performance

Willing to handle synchronization

Frequent data exchange

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 30 / 32

Key Takeaways

1 IPC needed because processes are isolated by design

2 Two models: Message passing (kernel involved) vs Shared memory (direct)

3 Pipes: Simple, unidirectional, parent-child

4 Named pipes: Like pipes, but unrelated processes

5 Message queues: Messages with types/priorities

6 Shared memory: Fastest, needs synchronization

7 Signals: Notifications, no data payload

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 31 / 32

This Week’s Tasks

Quiz 4: IPC mechanisms

Reading: Textbook Chapters 3.4-3.7

Assignment 1 Due: Process Scheduling Simulator

Assignment 2 Released: Producer-Consumer Problem

Use pipes or shared memory
Due: March 4

Next Week: Threads and Concurrency

Thread models, pthreads API
Race conditions preview

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 18, 2026 32 / 32

	Why Inter-Process Communication?
	IPC Models
	Pipes
	Message Queues
	Shared Memory
	Signals
	Producer-Consumer Problem
	Choosing the Right IPC
	Summary

