
Theory of Operating Systems
Week 5: Threads and Concurrency

Faye (Chi Zhang)

CUNY Hunter

February 25, 2026

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 1 / 48

Today’s Agenda

1 Introduction to Threads

2 Thread Models

3 POSIX Threads (pthreads)

4 Thread Synchronization Preview

5 Thread Pools

6 Practical Exercises

7 Summary

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 2 / 48

Why Threads?

Limitations of Processes:

Process creation is expensive (fork
overhead)

Context switching between processes is
costly

Inter-process communication requires
special mechanisms

Each process has separate address space

Solution: Threads

Lightweight execution units within a
process

Share the same address space

Cheaper to create and switch

Process

Code, Data, Files

T1

Stack

Regs

T2

Stack

Regs

T3

Stack

Regs

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 3 / 48

Thread vs Process

Aspect Process Thread

Address Space Separate Shared
Creation Time Heavy (ms) Light (µs)
Context Switch Expensive Cheap
Communication IPC required Direct memory
Isolation Strong Weak
Crash Impact Contained May crash process

Key Insight

Threads trade isolation for efficiency. Use threads when you need parallelism within a single
task; use processes when you need fault isolation.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 4 / 48

Multithreaded Process

Process with Multiple Threads:

Single process, multiple threads

Shared address space

Each thread has its own stack

Shared heap and globals

Independent execution paths

Benefits:

Parallel execution

Efficient communication

Responsive UI

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 5 / 48

What Threads Share vs Own

Shared (per-process):

Code (text segment)

Global variables (data segment)

Heap memory

Open file descriptors

Current working directory

User and group IDs

Signal handlers

Private (per-thread):

Thread ID

Stack (local variables)

CPU registers (PC, SP, etc.)

Stack pointer

Scheduling priority

Signal mask

errno value

Memory Layout Implication

Each thread needs its own stack for function calls and local variables, but they all access the
same heap and global data.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 6 / 48

Thread Memory Layout

Kernel Space
Thread Stacks

T1 T2 T3

stacks grow down

Heap (Shared)

BSS (Shared)

Data (Shared)

Text (Shared)

High Addr

Low Addr

Per-thread

Shared

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 7 / 48

Benefits of Multithreading

1 Responsiveness
UI thread remains responsive while worker threads compute
Non-blocking I/O operations

2 Resource Sharing
Threads share memory automatically
No need for explicit IPC mechanisms

3 Economy
Creating threads is 10-100x faster than processes
Context switching is 5-10x faster

4 Scalability
Can utilize multiple CPU cores
Better throughput on multiprocessor systems

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 8 / 48

Challenges of Multithreading

Correctness Issues:

Race conditions

Deadlocks

Data corruption

Non-deterministic behavior

Debugging Difficulty:

Heisenbugs (disappear when observed)

Hard to reproduce errors

Timing-dependent bugs

Race Condition Example

Two threads incrementing a counter:

// Thread 1 // Thread 2

read count read count

count++ count++

write count write count

Expected: 2, Possible: 1

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 9 / 48

User-Level vs Kernel-Level Threads

ULT (User-Level)

Managed in user space (library)

Very fast switch/create

Blocking syscall may block the process

KLT (Kernel-Level)

Managed/scheduled by the kernel

True parallelism on multi-core

One thread can block without stopping
others

User-Level Threads (ULT)

Thread Library

Kernel sees 1 thread

Kernel-Level Threads (KLT)

User Space

Kernel threads scheduled

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 10 / 48

Many-to-One Model (N:1)

Many user threads → one kernel
thread

Thread library in user space

Advantages:
Very fast thread operations
Portable across OS

Disadvantages:
No true parallelism
Blocking syscall blocks all

Examples: Green threads (early Java),
GNU Portable Threads

U1 U2 U3 U4

K

User Space

Kernel Space

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 11 / 48

One-to-One Model (1:1)

Each user thread → one kernel thread

Most common modern approach

Advantages:
True parallelism on multi-core
Blocking doesn’t affect others

Disadvantages:
Higher overhead (syscalls)
Limited by kernel resources

Examples: Linux (NPTL), Windows,
macOS

U1 U2 U3 U4

K1 K2 K3 K4

User Space

Kernel Space

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 12 / 48

Many-to-Many Model (M:N)

M user threads → N kernel threads

Hybrid approach

Advantages:
True parallelism (up to N cores)
Flexible scheduling
Can have many user threads

Disadvantages:
Complex implementation
Scheduling coordination

Examples: Solaris (historical), Go
runtime

U1 U2 U3 U4 U5 U6

K1 K2 K3

User Space

Kernel Space

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 13 / 48

Thread Model Comparison

Feature N:1 1:1 M:N

Parallelism None Full Partial
Thread Creation Fast Slow Medium
Context Switch Fast Slow Medium
Blocking Syscall Blocks all Individual Depends
Complexity Low Low High
Scalability Limited By kernel Flexible

Modern Trend

Most modern systems use 1:1 model (Linux NPTL, Windows). The M:N model sees renewed
interest in languages like Go (goroutines) and Rust (async/await).

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 14 / 48

Linux Threading: NPTL

NPTL = Native POSIX Thread Library

Replaced older LinuxThreads implementation

Uses 1:1 threading model

Key characteristics:

Uses clone() syscall with specific flags
Each thread is a task struct in kernel
Shared: address space, file descriptors, signal handlers
Private: stack, thread ID, signal mask

Thread Creation via clone()

clone(CLONE VM | CLONE FS | CLONE FILES | CLONE SIGHAND | CLONE THREAD, ...)

CLONE VM: Share virtual memory

CLONE THREAD: Same thread group

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 15 / 48

Introduction to pthreads

POSIX Threads: Standardized threading API (IEEE 1003.1c)

Portable across UNIX-like systems

Header: #include <pthread.h>

Link with: -lpthread (or -pthread)

Core Data Types

pthread t Thread identifier
pthread attr t Thread attributes
pthread mutex t Mutex (mutual exclusion)
pthread cond t Condition variable
pthread key t Thread-specific data key

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 16 / 48

Creating Threads: pthread create()

1 #include <pthread.h>

2

3 int pthread_create(

4 pthread_t *thread , // Output: thread ID

5 const pthread_attr_t *attr , // Thread attributes (NULL for default)

6 void *(* start_routine)(void *), // Function to execute

7 void *arg // Argument to function

8);

9 // Returns: 0 on success , error number on failure

Creates a new thread executing start routine(arg)

Thread ID stored in *thread

attr = NULL uses default attributes

Returns immediately (thread runs concurrently)

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 17 / 48

Simple Thread Example

1 #include <stdio.h>

2 #include <pthread.h>

3

4 void *print_message(void *arg) {

5 char *msg = (char *)arg;

6 printf("Thread says: %s\n", msg);

7 return NULL;

8 }

9

10 int main() {

11 pthread_t thread;

12 char *message = "Hello from thread!";

13

14 pthread_create (&thread , NULL , print_message , message);

15 pthread_join(thread , NULL); // Wait for thread to finish

16

17 printf("Main thread done.\n");

18 return 0;

19 }

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 18 / 48

Waiting for Threads: pthread join()

1 int pthread_join(

2 pthread_t thread , // Thread to wait for

3 void ** retval // Output: thread ’s return value (or NULL)

4);

5 // Returns: 0 on success , error number on failure

Behavior:

Blocks until thread terminates

Retrieves thread’s return value

Releases thread resources

Important:

Can only join once per thread

Must join or detach all threads

Failure to join = resource leak

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 19 / 48

Thread Return Values

1 void *compute_sum(void *arg) {

2 int *nums = (int *)arg;

3 int *result = malloc(sizeof(int));

4 *result = nums [0] + nums [1];

5 return result; // Return pointer to result

6 }

7

8 int main() {

9 pthread_t thread;

10 int data[] = {10, 20};

11 void *retval;

12

13 pthread_create (&thread , NULL , compute_sum , data);

14 pthread_join(thread , &retval);

15

16 int *sum = (int *) retval;

17 printf("Sum = %d\n", *sum); // Output: Sum = 30

18 free(sum);

19 return 0;

20 }

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 20 / 48

Terminating Threads

Three ways a thread can terminate:
1 Return from start routine
2 Call pthread exit()
3 Cancelled by another thread

1 void pthread_exit(void *retval);

2 // Does not return. Thread terminates immediately.

3

4 // Example:

5 void *worker(void *arg) {

6 if (error_condition) {

7 pthread_exit(NULL); // Terminate early

8 }

9 // ... normal work ...

10 return result;

11 }

Warning

Calling exit() from any thread terminates the entire process.
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 21 / 48

Detached Threads

1 int pthread_detach(pthread_t thread);

2 // Returns: 0 on success , error number on failure

Detached thread: resources automatically released on termination

Cannot be joined after detaching

Useful for ”fire and forget” threads

1 void *background_task(void *arg) {

2 // Do work , then exit

3 return NULL;

4 }

5

6 int main() {

7 pthread_t thread;

8 pthread_create (&thread , NULL , background_task , NULL);

9 pthread_detach(thread); // No need to join

10 // Main continues without waiting

11 // ...

12 }

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 22 / 48

Creating Multiple Threads

1 #define NUM_THREADS 5

2

3 void *worker(void *arg) {

4 int id = *(int *)arg;

5 printf("Thread %d running\n", id);

6 return NULL;

7 }

8

9 int main() {

10 pthread_t threads[NUM_THREADS];

11 int ids[NUM_THREADS];

12

13 for (int i = 0; i < NUM_THREADS; i++) {

14 ids[i] = i;

15 pthread_create (& threads[i], NULL , worker , &ids[i]);

16 }

17

18 for (int i = 0; i < NUM_THREADS; i++) {

19 pthread_join(threads[i], NULL);

20 }

21 return 0;

22 }
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 23 / 48

Common Pitfall: Passing Arguments

WRONG:

1 for (int i = 0; i < N; i++) {

2 pthread_create (&t[i], NULL ,

3 worker , &i); // BUG!

4 }

5 // Problem: i changes before

6 // thread reads it

CORRECT:

1 int ids[N];

2 for (int i = 0; i < N; i++) {

3 ids[i] = i;

4 pthread_create (&t[i], NULL ,

5 worker , &ids[i]); // OK

6 }

7 // Each thread has own copy

Alternative: Cast to void*

1 pthread_create (&t[i], NULL , worker , (void*)(intptr_t)i);

2 // In worker: int id = (int)(intptr_t)arg;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 24 / 48

Thread Attributes

1 pthread_attr_t attr;

2 pthread_attr_init (&attr);

3

4 // Set detach state

5 pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_DETACHED);

6

7 // Set stack size

8 pthread_attr_setstacksize (&attr , 2 * 1024 * 1024); // 2 MB

9

10 // Set scheduling policy

11 pthread_attr_setschedpolicy (&attr , SCHED_FIFO);

12

13 // Create thread with attributes

14 pthread_create (&thread , &attr , worker , NULL);

15

16 // Clean up

17 pthread_attr_destroy (&attr);

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 25 / 48

Thread Attributes Summary

Attribute Functions Description

Detach state setdetachstate Joinable or detached
Stack size setstacksize Thread stack size
Stack address setstackaddr Custom stack location
Guard size setguardsize Overflow protection
Scheduling setschedpolicy FIFO, RR, OTHER
Priority setschedparam Scheduling priority
Inherit sched setinheritsched Inherit from parent
Scope setscope System or process

Best Practice

Use default attributes (NULL) unless you have specific requirements. Customize only when
necessary.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 26 / 48

Thread-Specific Data (TSD)

Problem: Global variables are shared by all threads.
Solution: Thread-specific data provides per-thread storage.

1 pthread_key_t key;

2

3 void destructor(void *value) {

4 free(value); // Called when thread exits

5 }

6

7 // Once at program start

8 pthread_key_create (&key , destructor);

9

10 // In each thread

11 int *mydata = malloc(sizeof(int));

12 *mydata = thread_id;

13 pthread_setspecific(key , mydata);

14

15 // Later in same thread

16 int *data = pthread_getspecific(key);

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 27 / 48

The Need for Synchronization

The Problem:

Threads share memory

Concurrent access to shared data

Operations may interleave

Results become unpredictable

Race Condition:

Outcome depends on timing

Non-deterministic behavior

Hard to debug

count = 5

T1

read(5)

add 1

write(6)

T2

read(5)

add 1

write(6)

count = 6!

Expected: 7

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 28 / 48

Race Condition Example

1 #include <pthread.h>

2 #include <stdio.h>

3

4 int counter = 0; // Shared variable

5

6 void *increment(void *arg) {

7 for (int i = 0; i < 1000000; i++) {

8 counter ++; // Not atomic!

9 }

10 return NULL;

11 }

12

13 int main() {

14 pthread_t t1, t2;

15 pthread_create (&t1, NULL , increment , NULL);

16 pthread_create (&t2, NULL , increment , NULL);

17 pthread_join(t1, NULL);

18 pthread_join(t2, NULL);

19 printf("Counter = %d\n", counter); // Should be 2000000

20 return 0; // Actually: random < 2000000

21 }

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 29 / 48

Why counter++ is Not Atomic

counter++ compiles to:

1 LOAD counter → register

2 ADD 1 to register

3 STORE register → counter

Threads can interleave at any
point!

T1 T2 counter

0load(0)

add: r=1

store(1)

1

load(0)

add: r=1

store(1)

1

ti
m
e

Result

Both threads read 0, both increment to 1, both store 1. We lost one increment!

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 30 / 48

Critical Section

Definition

A critical section is a code segment that accesses shared resources and must not be executed
by more than one thread at a time.

Requirements for correct critical section handling:

1 Mutual Exclusion: Only one thread in CS at a time

2 Progress: If no thread is in CS, one waiting thread must be allowed to enter

3 Bounded Waiting: Limit on how long a thread waits to enter CS

General Pattern

entry section(); // Acquire lock
// Critical Section

exit section(); // Release lock

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 31 / 48

Mutex: Mutual Exclusion Lock

1 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

2 int counter = 0;

3

4 void *increment(void *arg) {

5 for (int i = 0; i < 1000000; i++) {

6 pthread_mutex_lock (&mutex); // Enter CS

7 counter ++; // Critical section

8 pthread_mutex_unlock (&mutex); // Exit CS

9 }

10 return NULL;

11 }

pthread mutex lock(): Blocks if mutex is held

pthread mutex unlock(): Releases mutex

Now counter will correctly be 2000000

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 32 / 48

Synchronization Primitives Preview

We will cover these in detail in Week 6:

1 Mutex (Mutual Exclusion)
Binary lock: locked or unlocked
Only owner can unlock

2 Semaphore
Counting synchronization primitive
Can allow N threads simultaneously

3 Condition Variable
Wait for a condition to become true
Used with mutex for complex synchronization

4 Read-Write Lock
Multiple readers OR one writer
Optimizes read-heavy workloads

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 33 / 48

Motivation for Thread Pools

Problem with creating threads per task:

Thread creation has overhead (stack allocation, kernel structures)

Many short tasks = many create/destroy cycles

Unbounded thread creation can exhaust resources

Solution: Thread Pool

Create a fixed number of worker threads at startup

Tasks submitted to a queue

Workers pick tasks from queue and execute them

Threads are reused for multiple tasks

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 34 / 48

Thread Pool Architecture

Task Queue

T1 T2 T3

Worker Threads

Worker 1

Worker 2

Worker 3

Worker 4

Tasks Done

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 35 / 48

Thread Pool: Visual Overview

Thread Pool Pattern:

Pre-created worker threads

Task queue for work items

Workers fetch and execute tasks

Threads are reused

Common in:

Web servers (Apache, Nginx)

Database connections

Game engines

GUI frameworks

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 36 / 48

Thread Pool Benefits

Performance:

Eliminates thread creation overhead

Reduced memory footprint

Better cache utilization

Resource Management:

Bounded number of threads

Prevents resource exhaustion

Predictable memory usage

Flexibility:

Queue provides backpressure

Can prioritize tasks

Graceful degradation under load

Use Cases:

Web servers

Database connection pools

Parallel computation

Event processing

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 37 / 48

Simple Thread Pool Structure

1 typedef struct {

2 void (* function)(void *); // Task function

3 void *argument; // Task argument

4 } task_t;

5
6 typedef struct {

7 pthread_t *threads; // Array of worker threads

8 int thread_count; // Number of workers

9
10 task_t *queue; // Task queue

11 int queue_size; // Max queue size

12 int queue_front; // Front of queue

13 int queue_rear; // Rear of queue

14 int task_count; // Current tasks in queue

15
16 pthread_mutex_t lock; // Protects queue

17 pthread_cond_t not_empty; // Signal: queue not empty

18 pthread_cond_t not_full; // Signal: queue not full

19
20 int shutdown; // Shutdown flag

21 } threadpool_t;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 38 / 48

Thread Pool Worker Function

1 void *worker_thread(void *arg) {

2 threadpool_t *pool = (threadpool_t *)arg;

3 task_t task;

4
5 while (1) {

6 pthread_mutex_lock (&pool ->lock);

7
8 // Wait for task or shutdown

9 while (pool ->task_count == 0 && !pool ->shutdown) {

10 pthread_cond_wait (&pool ->not_empty , &pool ->lock);

11 }

12
13 if (pool ->shutdown) {

14 pthread_mutex_unlock (&pool ->lock);

15 break;

16 }

17
18 // Get task from queue

19 task = pool ->queue[pool ->queue_front];

20 pool ->queue_front = (pool ->queue_front + 1) % pool ->queue_size;

21 pool ->task_count --;

22
23 pthread_cond_signal (&pool ->not_full);

24 pthread_mutex_unlock (&pool ->lock);

25
26 // Execute task

27 (task.function)(task.argument);

28 }

29 return NULL;

30 }
Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 39 / 48

Thread Pool Sizing

How many threads should a pool have?

CPU-bound tasks: threads ≈ number of CPU cores

More threads = context switch overhead
Example: Image processing, encryption

I/O-bound tasks: threads > number of CPU cores

Threads spend time waiting for I/O
Can overlap I/O with computation
Example: Web requests, file I/O

Rule of Thumb

For mixed workloads: Nthreads = Ncores × (1 + W
C)

where W = wait time, C = compute time

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 40 / 48

Thread Pool in Practice

Real-world implementations:

Java: ExecutorService, ThreadPoolExecutor

C++11: std::async, custom implementations

Python: concurrent.futures.ThreadPoolExecutor

Go: Goroutines with channel-based scheduling

POSIX: Manual implementation or libraries (libuv, GLib)

Design Considerations

Task queue: bounded vs unbounded

Rejection policy when queue is full

Thread lifecycle: core vs max threads

Work stealing for load balancing

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 41 / 48

Exercise 1: Basic Thread Creation

Task

Write a program that creates 4 threads. Each thread should:

1 Print its thread ID

2 Sleep for a random time (1-3 seconds)

3 Print a completion message

The main thread should wait for all threads to complete.

Expected Output (order may vary):

Thread 0 starting

Thread 1 starting

Thread 2 starting

Thread 3 starting

Thread 1 finished

Thread 0 finished

Thread 3 finished

Thread 2 finished

All threads completed.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 42 / 48

Exercise 2: Parallel Sum

Task

Given an array of 1,000,000 integers, compute the sum using multiple threads:

1 Divide the array into N equal parts

2 Create N threads, each computing partial sum

3 Collect partial sums and compute total

Compare performance with single-threaded version.

Hints:

Pass array bounds as thread argument

Use pthread join to get return values

Measure time with clock gettime()

Try different thread counts: 1, 2, 4, 8

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 43 / 48

Exercise 3: Producer-Consumer Preview

Task

Implement a simple producer-consumer pattern:

2 producer threads adding items to a shared buffer

2 consumer threads removing items

Buffer size: 10 items

Each producer adds 50 items

Each consumer removes 50 items

This exercise previews Week 6 topics:

Mutex for mutual exclusion

Condition variables for signaling

Bounded buffer synchronization

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 44 / 48

Key Takeaways

1 Threads vs Processes
Threads share address space, processes don’t
Threads are lighter but less isolated

2 Thread Models
N:1, 1:1, M:N models with different tradeoffs
Modern systems mostly use 1:1 (Linux NPTL)

3 POSIX Threads
pthread create, pthread join, pthread exit

Thread attributes for customization

4 Synchronization
Shared data requires protection
Mutexes prevent race conditions

5 Thread Pools
Reuse threads for efficiency
Size based on workload characteristics

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 45 / 48

Common Pitfalls to Avoid

Mistakes to Watch For
1 Passing stack variables to threads (use heap or static)

2 Forgetting to join or detach threads (resource leak)

3 Accessing shared data without synchronization

4 Calling exit() instead of pthread exit()

5 Creating too many threads (exhausting resources)

6 Deadlocks from improper lock ordering

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 46 / 48

Next Week: Synchronization

Week 6 Preview:

Mutex in depth: types, attributes, error checking

Condition variables: wait, signal, broadcast

Semaphores: counting and binary

Read-write locks

Classic synchronization problems:

Producer-Consumer
Readers-Writers
Dining Philosophers

Deadlock detection and prevention

Preparation

Review mutex usage from today. Try Exercise 3 (producer-consumer) before next class.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 47 / 48

Wrap-up & Tasks

Quiz 5: Available now, covers threads and concurrency basics

Assignment 3: Thread-parallel matrix multiplication (due in 2 weeks)

Reading: Chapter on threads in your textbook

Practice: Complete the three exercises

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 48 / 48

	Introduction to Threads
	Thread Models
	POSIX Threads (pthreads)
	Thread Synchronization Preview
	Thread Pools
	Practical Exercises
	Summary

