Theory of Operating Systems

Week 5: Threads and Concurrency

Faye (Chi Zhang) (CUNY Hunter)

Faye (Chi Zhang)
CUNY Hunter

February 25, 2026

Theory of OS

February 25, 2026



Today's Agenda

@ Introduction to Threads

© Thread Models

© POSIX Threads (pthreads)

@ Thread Synchronization Preview
© Thread Pools

@ Practical Exercises

@ Summary

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Limitations of Processes: Process

@ Process creation is expensive (fork Code. Data. Files
overhead)

@ Context switching between processes is T1 T2 T3
costly Stack | | Stack | | Stack
Regs Regs Regs

@ Inter-process communication requires
special mechanisms

@ Each process has separate address space

Solution: Threads
o Lightweight execution units within a
process
@ Share the same address space

@ Cheaper to create and switch

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 3/48



Thread vs Process

Aspect Process Thread

Address Space  Separate Shared

Creation Time  Heavy (ms)  Light (us)
Context Switch  Expensive Cheap
Communication IPC required Direct memory
Isolation Strong Weak

Crash Impact Contained May crash process

Threads trade isolation for efficiency. Use threads when you need parallelism within a single
task; use processes when you need fault isolation.

Faye (Chi Zhan CUNY Hunter Theory of OS February 25, 2026 4/48
Yy g /



Multithreaded Process

Process with Multiple Threads: Process
@ Single process, multiple threads

@ Shared address space

Thread #1

3

@ Each thread has its own stack

@ Shared heap and globals

@ Independent execution paths

Benefits:

Time

@ Parallel execution

o Efficient communication

@ Responsive Ul

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



What Threads Share vs Own

Shared (per-process): Private (per-thread):
o Code (text segment) @ Thread ID
@ Global variables (data segment)

Stack (local variables)

@ Heap memory o CPU registers (PC, SP, etc.)
@ Open file descriptors @ Stack pointer

o Current working directory @ Scheduling priority

@ User and group IDs @ Signal mask

@ Signal handlers @ errno value

Memory Layout Implication

Each thread needs its own stack for function calls and local variables, but they all access the
same heap and global data.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Memory Layo

Faye (Chi Zhang) (CUNY Hunter)

Kernel Space
Thread Stacks

T1 T2 T3

4]

stacks srow down

Heap (Ehared)

BSS (Shared)

Data (Shared)

Text (Shared)

Theory of OS

High Addr

Per-thread

Shared

Low Addr

February 25, 2026 7/48



Benefits of Multithreading

© Responsiveness
o Ul thread remains responsive while worker threads compute
o Non-blocking /0 operations

@ Resource Sharing

e Threads share memory automatically
e No need for explicit IPC mechanisms

© Economy

o Creating threads is 10-100x faster than processes
o Context switching is 5-10x faster

@ Scalability

e Can utilize multiple CPU cores
e Better throughput on multiprocessor systems

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 8/48



Challenges of Multithreading

Correctness Issues:

@ Race conditions

@ Deadlocks

Race Condition Example

e Data corruption Two threads incrementing a counter:
@ Non-deterministic behavior // Thread 1 // Thread 2
read count read count
count++ count++

Debugging Difficulty:

write count write count

@ Heisenbugs (disappear when observed)

Expected: 2, Possible: 1

@ Hard to reproduce errors

@ Timing-dependent bugs

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 9/48



User-Level vs Kernel-Level Threads

ULT (User-Level) KLT (Kernel-Level)
e Managed in user space (library) @ Managed/scheduled by the kernel
o Very fast switch/create @ True parallelism on multi-core
@ Blocking syscall may block the process @ One thread can block without stopping
others

User-Level Threads (ULT)  Kernel-Level Threads (KLT)

Thread Library User Space

I N Oy

Kernel sees 1 thread Kerne| thch eduled

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Many-to-One Model (N:1)

@ Many user threads — one kernel User Space
thread
@ Thread library in user space @ @ @
o Advantages:
o Very fast thread operations \,/
o Portable across OS
o Disadvantages: @

e No true parallelism

o Blocking syscall blocks all Kernel Space

e Examples: Green threads (early Java),
GNU Portable Threads

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



One-to-One Model (1:1)

Each user thread — one kernel thread User Space

k/ljj;ﬁ:;tzn modern approach @ @ @

o True parallelism on multi-core
o Blocking doesn't affect others

o Disadvantages:
o Higher overhead (syscalls) @ @ @
o Limited by kernel resources Kernel S

o Examples: Linux (NPTL), Windows, emel opace

macOS

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Many-to-Many Model (M:N)

M user threads — N kernel threads User Space

Hybrid approach @@@@

Advantages:
o True parallelism (up to N cores)
e Flexible scheduling
o Can have many user threads

Disadvantages: @ @ @

e Complex implementation
e Scheduling coordination

Kernel Space

Examples: Solaris (historical), Go
runtime

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Model Comparison

Feature N:1 1:1 M:N
Parallelism None Full Partial
Thread Creation Fast Slow Medium
Context Switch Fast Slow Medium
Blocking Syscall ~ Blocks all  Individual ~ Depends
Complexity Low Low High
Scalability Limited By kernel Flexible

Modern Trend

Most modern systems use 1:1 model (Linux NPTL, Windows). The M:N model sees renewed
interest in languages like Go (goroutines) and Rust (async/await).

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Linux Threading: NPTL

NPTL = Native POSIX Thread Library
Replaced older LinuxThreads implementation
Uses 1:1 threading model

Key characteristics:

e Uses clone() syscall with specific flags

e Each thread is a task_struct in kernel

e Shared: address space, file descriptors, signal handlers
e Private: stack, thread ID, signal mask

Thread Creation via clone()
clone (CLONE VM | CLONEFS | CLONE FILES | CLONE_SIGHAND | CLONE_THREAD, ...)

@ CLONE_VM: Share virtual memory
@ CLONE_THREAD: Same thread group

Faye (Chi Zhang) (CUNY Hunter) Theory of OS



Introduction to pthreads

POSIX Threads: Standardized threading API (IEEE 1003.1c)
Portable across UNIX-like systems

Header: #include <pthread.h>

Link with: -1pthread (or -pthread)

Core Data Types

pthread t Thread identifier
pthread attr_t  Thread attributes
pthread mutex t Mutex (mutual exclusion)
pthread cond t  Condition variable
pthread key_t Thread-specific data key

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Creating Threads: pthread_create()

#include <pthread.h>

int pthread_create(
pthread_t =*thread,

// Output: thread ID

const pthread_attr_t *attr, // Thread attributes (NULL for default)
void *(*start_routine) (void *), // Function to execute

void *arg
)

// Returms: O on success,

// Argument to function

error number on failure

Faye (Chi Zhang) (CUNY Hunter)

Creates a new thread executing start_routine(arg)
Thread ID stored in *thread
attr = NULL uses default attributes

Returns immediately (thread runs concurrently)

Theory of OS February 25, 2026




Simple Thread Example

#include <stdio.h>
#include <pthread.h>

void *print_message(void *arg) {
char *msg = (char *)arg;

printf ("Thread says: %s\n", msg);

return NULL;

int main() {
pthread_t thread;

char *message = "Hello from thread!";

pthread_create (&thread, NULL,

print_message,

message) ;

pthread_join(thread, NULL); // Wait for thread to finish

printf ("Main thread done.\n");
return O;

Faye (Chi Zhang) (CUNY Hunter)

Theory of OS

February 25, 2026




Waiting for Threads: pthread_join()

int pthread_join(

: pthread_t thread, // Thread to wait for

: void **retval // Output: thread’s return value (or NULL)
)

| // Returns: O on success, error number on failure

Behavior: Important:
@ Blocks until thread terminates @ Can only join once per thread
@ Retrieves thread's return value @ Must join or detach all threads
@ Releases thread resources @ Failure to join = resource leak

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Return Values

void *compute_sum(void *arg) {

int

int *nums = (int *)arg;

int *result = malloc(sizeof(int));

*result = nums[0] + nums[1];

return result; // Return pointer to result

main () {

pthread_t thread;

int datal]l = {10, 20};
void *retval;

pthread_create (&thread, NULL, compute_sum, data);
pthread_join(thread, &retval);

int *sum = (int *)retval;

printf ("Sum = %d\n", *sum); // Output: Sum = 30
free(sum) ;

return O0;

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 25, 2026




minating Threads

Three ways a thread can terminate:
@ Return from start_routine
@ Call pthread_exit()
© Cancelled by another thread

void pthread_exit(void *retval);
| // Does not return. Thread terminates immediately.

// Example:

| void *worker (void *arg) {

» if (error_condition) {

pthread_exit (NULL); // Terminate early
: }

» // ... normal work

> return result;

Calling exit () from any thread terminates the entire process.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February



Detached Threads

int pthread_detach(pthread_t thread);
// Returns: 0 on success, error number on failure

@ Detached thread: resources automatically released on termination
@ Cannot be joined after detaching
@ Useful for "fire and forget” threads

void *background_task(void x*arg) {
// Do work, then exit
return NULL;

}

int main() {
pthread_t thread;
pthread_create (&thread, NULL, background_task, NULL);
pthread_detach(thread); // No need to join
// Main continues without waiting

/7

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 25, 2026




Creating Multiple Threads

#define NUM_THREADS 5

void *worker(void *arg) {
int id *(int *)arg;
printf ("Thread %d running\n",
return NULL;

int main() {

pthread_t threads [NUM_THREADS];

int ids [NUM_THREADS];

for (int i
ids[i]

0;
ij

pthread_create (&threads[i],

}

for (int i = 0;
pthread_join(threads[il,
}

return O;

Faye (Chi Zhang) (CUNY Hunter)

i < NUM_THREADS;

i < NUM_THREADS;

id);

i++) {

NULL, worker, &ids[i]);

i++) {
NULL) ;

Theory of OS February 25, 2026



Common Pitfall: Passing Argume

WRONG: CORRECT:

for (imt i = 0; i < N; i++) { ;EE ti:£N1;= 0; i < N; i++) {
pthread_create (&t [il, NULL, . . 0 ’
ids[i] = 1i;

3 . ]
worker, &i); // BUG! pthread_create (&t[i], NULL,

1 worker, &ids[il); // OK

// Problem: i changes before

// thread reads it ¥

// Each thread has own copy

Alternative: Cast to void*

pthread_create (&t [i], NULL, worker, (voidx*) (intptr_t)i);
| // In worker: int id = (int) (intptr_t)arg;

~No o s wN

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February



Thread Attributes

pthread_attr_t attr;
| pthread_attr_init (&attr);

| // Set detach state
| pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);

// Set stack size
| pthread_attr_setstacksize (&attr, 2 * 1024 * 1024); // 2 MB

| // Set scheduling policy
pthread_attr_setschedpolicy(&attr, SCHED_FIFO0);

| // Create thread with attributes
pthread_create (&thread, &attr, worker, NULL);

| // Clean up
| pthread_attr_destroy (&attr);

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Attributes Summary

Attribute Functions Description

Detach state setdetachstate Joinable or detached

Stack size setstacksize Thread stack size
Stack address  setstackaddr Custom stack location
Guard size setguardsize Overflow protection
Scheduling setschedpolicy FIFO, RR, OTHER
Priority setschedparam Scheduling priority
Inherit sched setinheritsched Inherit from parent
Scope setscope System or process

Best Practice

Use default attributes (NULL) unless you have specific requirements. Customize only when
necessary.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread-Specific Data (TSD)

Problem: Global variables are shared by all threads.
Solution: Thread-specific data provides per-thread storage.

pthread_key_t key;

| void destructor(void *value) {

» free(value); // Called when thread exits
1}
// Once at program start

| pthread_key_create (&key, destructor);

| // In each thread

int *mydata = malloc(sizeof (int));
| *mydata = thread_id;

| pthread_setspecific(key, mydata);

| // Later in same thread
| int *data = pthread_getspecific (key);

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



The Need for Synchronization

The Problem:

@ Threads share memory

@ Concurrent access to shared data
@ Operations may interleave
°

Results become unpredictable

Race Condition:
@ Outcome depends on timing
@ Non-deterministic behavior
@ Hard to debug

count = 5
T1 T2
read(5) read(5)
add 1 add 1
write(6) write(6)
count = 6!
Expected: 7

Faye (Chi Zhang) (CUNY Hunter)

Theory of OS February 25, 2026



Race Condition Example

#include <pthread.h>
#include <stdio.h>

int counter = 0; // Shared variable

void *increment (void *arg) {
for (int i = 0; i < 1000000; i++) {
counter++; // Not atomic!
}
return NULL;

int main() {
pthread_t t1, t2;
pthread_create (&t1, NULL, increment
pthread_create (&t2, NULL, increment
pthread_join(tl, NULL);
pthread_join(t2, NULL);
printf ("Counter = %d\n", counter);
return O;

, NULL);
, NULL);

// Should be 2000000

// Actually:

random < 2000000

Faye (Chi Zhang) (CUNY Hunter)

Theory of OS

February 25, 2026




Why counter++ is Not Atomic

counter++ compiles to:

© LOAD counter — register
© ADD 1 to register

© STORE register — counter

Threads can interleave at any
point!

time

T1 T2 counter
load(0) N
7
load(0 3
add: r=1
add: r=1
store(1) \
11
store(1) }
1

Both threads read 0, both increment to 1, both store 1.

We lost one increment!

Faye (Chi Zhang) (CUNY Hunter)

Theory of OS

February 25, 2026



Critical Section

Definition

A critical section is a code segment that accesses shared resources and must not be executed
by more than one thread at a time.

Requirements for correct critical section handling:
© Mutual Exclusion: Only one thread in CS at a time
@ Progress: If no thread is in CS, one waiting thread must be allowed to enter
© Bounded Waiting: Limit on how long a thread waits to enter CS

General Pattern

entry_section(); // Acquire lock
// Critical Section
exit_section(); // Release lock

Faye (Chi Zhang) (CUNY Hunter) Theory of OS



Mutex: Mutual Exclusion Lock

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int counter = 0;

void *increment(void *arg) {
for (int i = 0; i < 1000000; i++) {
pthread_mutex_lock (&mutex) ; // Enter CS
counter++; // Critical section
pthread_mutex_unlock (&mutex); // Exit CS
}
return NULL;

@ pthread mutex_lock(): Blocks if mutex is held
@ pthread mutex unlock(): Releases mutex

@ Now counter will correctly be 2000000

Faye (Chi Zhang) (CUNY Hunter) Theory of OS

February 25, 2026




Synchronization Primitives Preview

We will cover these in detail in Week 6:

© Mutex (Mutual Exclusion)
e Binary lock: locked or unlocked
e Only owner can unlock
@ Semaphore
e Counting synchronization primitive
e Can allow N threads simultaneously
© Condition Variable
o Wait for a condition to become true
e Used with mutex for complex synchronization
© Read-Write Lock

e Multiple readers OR one writer
e Optimizes read-heavy workloads

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Motivation for Thread Pools

Problem with creating threads per task:
@ Thread creation has overhead (stack allocation, kernel structures)
@ Many short tasks = many create/destroy cycles

@ Unbounded thread creation can exhaust resources

Solution: Thread Pool
@ Create a fixed number of worker threads at startup
@ Tasks submitted to a queue
@ Workers pick tasks from queue and execute them

@ Threads are reused for multiple tasks

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Pool Architecture

Worker Threads

Task Queue | Worker 1 |
Tasks ——— —— Done
T1 T2 T3 | Db 2 |
| Worker 3 |
| Worker 4 |

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Pool: Visual Overview

Thread Pool Pattern:
@ Pre-created worker threads

@ Task queue for work items Task queue

@ Workers fetch and execute tasks O — O _l

@ Threads are reused

Common in: T?Eiild O O O "-:‘ O O

o Web servers (Apache, Nginx)
Database connections Completed tasks
°
-~ «—O

@ Game engines

o GUI frameworks

Source: Wikimedia Commons

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Pool Benefits

Flexibility:

Performance: )
@ Queue provides backpressure

@ Eliminates thread creation overhead oo
@ Can prioritize tasks

@ Reduced memory footprint .
@ Graceful degradation under load

@ Better cache utilization

Use Cases:

Resource Management:
o Web servers

@ Bounded number of threads i
@ Database connection pools

@ Prevents resource exhaustion i
@ Parallel computation

@ Predictable memory usage X
@ Event processing

February 25, 2026

Faye (Chi Zhang) (CUNY Hunter) Theory of OS



Simple Thread Pool Structure

typedef struct {
' void (*function) (void #*); // Task function
i void *argument; // Task argument

} task_t;
,
| typedef struct {
’ pthread_t *threads; // Array of worker threads
] int thread_count; // Number of workers
)
) task_t *queue; // Task queue

int queue_size; // Max queue size
! int queue_front; // Front of queue
] int queue_rear; // Rear of queue
int task_count; // Current tasks in queue

.
» pthread_mutex_t lock; // Protects queue
' pthread_cond_t not_empty; // Signal: queue not empty
i pthread_cond_t not_full; // Signal: queue not full
)
] int shutdown; // Shutdown flag

} threadpool_t;

Faye (Chi Zha



Thread Pool Worker Function

void #*worker_thread(void *arg) {
threadpool_t *pool = (threadpool_t *)arg;
task_t task;

while (1) {
pthread_mutex_lock (&pool->lock);

// Wait for task or shutdown

while (pool->task_count == 0 && !pool->shutdown) {
pthread_cond_wait (&pool->not_empty, &pool->lock);

}

if (pool->shutdown) {
pthread_mutex_unlock(&pool—>lock);
break;

}

// Get task from queue

task = pool->queue[pool->queue_frontl];
pool->queue_front = (pool->queue_front + 1)
pool->task_count--;

pthread_cond_signal (&pool->not_full);
pthread_mutex_unlock (&pool->lock);

// Execute task

(task.function) (task.argument) ;
¥
return NULL;

Faye (Chi Zha

% pool->queue_size;




Thread Pool Sizing

How many threads should a pool have?

@ CPU-bound tasks: threads ~ number of CPU cores
o More threads = context switch overhead
o Example: Image processing, encryption

@ 1/0O-bound tasks: threads > number of CPU cores

e Threads spend time waiting for /0
e Can overlap 1/O with computation
o Example: Web requests, file I/0

Rule of Thumb

For mixed workloads: Nipreads = Neores % (1 + %)
where W = wait time, C = compute time

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Thread Pool in Practice

Real-world implementations:

Java: ExecutorService, ThreadPoolExecutor
C++11: std::async, custom implementations
Python: concurrent.futures.ThreadPoolExecutor
Go: Goroutines with channel-based scheduling

POSIX: Manual implementation or libraries (libuv, GLib)

Design Considerations

@ Task queue: bounded vs unbounded
@ Rejection policy when queue is full
@ Thread lifecycle: core vs max threads

@ Work stealing for load balancing

Faye (Chi Zhang) (CUNY Hunter) Theory of OS



Exercise 1: Basic Thread Creation

Write a program that creates 4 threads. Each thread should:
@ Print its thread 1D
@ Sleep for a random time (1-3 seconds)

© Print a completion message

The main thread should wait for all threads to complete.

Expected Output (order may vary):
Thread 0 starting

Thread 1 starting
Thread 2 starting
Thread 3 starting
Thread 1 finished

Thread O finished

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026 42 /48



Exercise 2: Parallel Sum

Given an array of 1,000,000 integers, compute the sum using multiple threads:
@ Divide the array into N equal parts
@ Create N threads, each computing partial sum
© Collect partial sums and compute total

Compare performance with single-threaded version.

Hints:
@ Pass array bounds as thread argument
@ Use pthread_join to get return values
@ Measure time with clock_gettime()
o Try different thread counts: 1, 2, 4, 8

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Exercise 3: Producer-Consumer Preview

Implement a simple producer-consumer pattern:

@ 2 producer threads adding items to a shared buffer
2 consumer threads removing items
Buffer size: 10 items

Each producer adds 50 items

Each consumer removes 50 items

This exercise previews Week 6 topics:
@ Mutex for mutual exclusion
@ Condition variables for signaling

@ Bounded buffer synchronization

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Key Takeaways

@ Threads vs Processes

o Threads share address space, processes don't
o Threads are lighter but less isolated

@ Thread Models
e N:1, 1:1, M:N models with different tradeoffs
e Modern systems mostly use 1:1 (Linux NPTL)
© POSIX Threads
o pthread _create, pthread_join, pthread_exit
e Thread attributes for customization
@ Synchronization
e Shared data requires protection
o Mutexes prevent race conditions

@ Thread Pools

o Reuse threads for efficiency
o Size based on workload characteristics

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Common Pitfalls to Avoid

Mistakes to Watch For
@ Passing stack variables to threads (use heap or static)
@ Forgetting to join or detach threads (resource leak)
© Accessing shared data without synchronization
© Calling exit () instead of pthread_exit()
© Creating too many threads (exhausting resources)

© Deadlocks from improper lock ordering

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Next Week: Synchronization

Week 6 Preview:
@ Mutex in depth: types, attributes, error checking
@ Condition variables: wait, signal, broadcast
@ Semaphores: counting and binary

o Read-write locks
@ Classic synchronization problems:

e Producer-Consumer
o Readers-Writers
e Dining Philosophers

Deadlock detection and prevention

Preparation

Review mutex usage from today. Try Exercise 3 (producer-consumer) before next class.

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



Wrap-up & Tasks

Quiz 5: Available now, covers threads and concurrency basics
Assignment 3: Thread-parallel matrix multiplication (due in 2 weeks)

Reading: Chapter on threads in your textbook

Practice: Complete the three exercises

Questions?

Faye (Chi Zhang) (CUNY Hunter) Theory of OS February 25, 2026



	Introduction to Threads
	Thread Models
	POSIX Threads (pthreads)
	Thread Synchronization Preview
	Thread Pools
	Practical Exercises
	Summary

